Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 2474, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169196

RESUMO

In collective cell migration, the motion results from forces produced by each cell and transmitted to the neighboring cells and to the substrate. Because inertia is negligible and the migration occurs over long time scales, the cell layer exhibits viscous behavior, where force and motion are connected by an apparent friction that results from the breaking and forming of adhesive bonds at the cell-cell and cell-substrate interfaces. Most theoretical models for collective migration include an apparent friction to connect force and motion, with many models making predictions that depend on the ratio of cell-cell and cell-substrate friction. However, little is known about factors that affect friction, leaving predictions of many theoretical models untested. Here, we considered how substrate stiffness and the number of adhesions affected friction at the cell-substrate interface. The experimental data were interpreted through prior theoretical models, which led to the same conclusion, that increased substrate stiffness increased the number of cell-substrate adhesions and caused increased cell-substrate friction. In turn, the friction affected the collective migration by altering the curvature at the edge of the cell layer. By revealing underlying factors affecting friction and demonstrating how friction perturbs the collective migration, this work provides experimental evidence supporting prior theoretical models and motivates the study of other ways to alter the collective migration by changing friction.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Elasticidade , Fricção , Adesão Celular/fisiologia , Células HaCaT , Humanos , Modelos Teóricos
3.
Front Cell Dev Biol ; 10: 929495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200046

RESUMO

Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.

4.
J Mech Behav Biomed Mater ; 98: 262-267, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31280053

RESUMO

Cartilage breaks down during mechanically-mediated osteoarthritis (OA). While previous research has begun to elucidate mechanical, structural and cellular damage in response to cyclic loading, gaps remain in our understanding of the link between cyclic cartilage loading and OA-like mechanical damage. Thus, the aim of this study was to quantify irreversible cartilage damage in response to cyclic loading. A novel in vitro model of damage through cartilage-on-cartilage cyclic loading was established. Cartilage was loaded at 1 Hz to two different doses (10,000 or 50,000 cycles) between -6.0 ±â€¯0.2 MPa and -10.3 ±â€¯0.2 MPa 1st Piola-Kirchhoff stress. After loading, mechanical damage (altered mechanical properties: elastic moduli and dissipated energy) and structural damage (surface damage and specimen thickness) were quantified. Linear and tangential moduli were determined by fitting the loading portion of the stress-strain curves. Dissipated energy was calculated from the area between loading and unloading stress-strain curves. Specimen thickness was measured both before and after loading. Surface damage was assessed by staining samples with India ink, then imaging the articular surface. Cyclic loading resulted in dose-dependent decreases in linear and tangential moduli, energy dissipation, thickness, and intact area. Collectively, these results show that cartilage damage can be initiated by mechanical loading alone in vitro, suggesting that cyclic loading can cause in vivo damage. This study demonstrated that with increased number of cycles, cartilage undergoes both tissue softening and structural damage. These findings are a first step towards characterizing the cartilage response to cyclic loading, which can ultimately provide important insight for delaying the initiation and slowing the progression of OA.


Assuntos
Cartilagem Articular/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/citologia , Teste de Materiais , Suínos , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA