Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 116(1): 277-297, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638215

RESUMO

Carboxysomes are protein-based organelles essential for carbon fixation in cyanobacteria and proteobacteria. Previously, we showed that the cyanobacterial nucleoid is used to equally space out ß-carboxysomes across cell lengths by a two-component system (McdAB) in the model cyanobacterium Synechococcus elongatus PCC 7942. More recently, we found that McdAB systems are widespread among ß-cyanobacteria, which possess ß-carboxysomes, but are absent in α-cyanobacteria, which possess structurally and phyletically distinct α-carboxysomes. Cyanobacterial α-carboxysomes are thought to have arisen in proteobacteria and then horizontally transferred into cyanobacteria, which suggests that α-carboxysomes in proteobacteria may also lack the McdAB system. Here, using the model chemoautotrophic proteobacterium Halothiobacillus neapolitanus, we show that a McdAB system distinct from that of ß-cyanobacteria operates to position α-carboxysomes across cell lengths. We further show that this system is widespread among α-carboxysome-containing proteobacteria and that cyanobacteria likely inherited an α-carboxysome operon from a proteobacterium lacking the mcdAB locus. These results demonstrate that McdAB is a cross-phylum two-component system necessary for positioning both α- and ß-carboxysomes. The findings have further implications for understanding the positioning of other protein-based bacterial organelles involved in diverse metabolic processes. PLAIN LANGUAGE SUMMARY: Cyanobacteria are well known to fix atmospheric CO2 into sugars using the enzyme Rubisco. Less appreciated are the carbon-fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Halothiobacillus/metabolismo , Proteínas de Bactérias/genética , Halothiobacillus/genética , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
2.
Biophys J ; 120(7): 1123-1138, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33186556

RESUMO

Recent investigations in bacteria suggest that membraneless organelles play a crucial role in the subcellular organization of bacterial cells. However, the biochemical functions and assembly mechanisms of these compartments have not yet been completely characterized. This article assesses the current methodologies used in the study of membraneless organelles in bacteria, highlights the limitations in determining the phase of complexes in cells that are typically an order of magnitude smaller than a eukaryotic cell, and identifies gaps in our current knowledge about the functional role of membraneless organelles in bacteria. Liquid-liquid phase separation (LLPS) is one proposed mechanism for membraneless organelle assembly. Overall, we outline the framework to evaluate LLPS in vivo in bacteria, we describe the bacterial systems with proposed LLPS activity, and we comment on the general role LLPS plays in bacteria and how it may regulate cellular function. Lastly, we provide an outlook for super-resolution microscopy and single-molecule tracking as tools to assess condensates in bacteria.


Assuntos
Fenômenos Fisiológicos Celulares , Organelas , Bactérias
3.
Mol Biol Evol ; 37(5): 1434-1451, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899489

RESUMO

Carboxysomes are protein-based organelles that are essential for allowing cyanobacteria to fix CO2. Previously, we identified a two-component system, McdAB, responsible for equidistantly positioning carboxysomes in the model cyanobacterium Synechococcus elongatus PCC 7942 (MacCready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli AG, Ducat DC. 2018. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. eLife 7:pii:e39723). McdA, a ParA-type ATPase, nonspecifically binds the nucleoid in the presence of ATP. McdB, a novel factor that directly binds carboxysomes, displaces McdA from the nucleoid. Removal of McdA from the nucleoid in the vicinity of carboxysomes by McdB causes a global break in McdA symmetry, and carboxysome motion occurs via a Brownian-ratchet-based mechanism toward the highest concentration of McdA. Despite the importance for cyanobacteria to properly position their carboxysomes, whether the McdAB system is widespread among cyanobacteria remains an open question. Here, we show that the McdAB system is widespread among ß-cyanobacteria, often clustering with carboxysome-related components, and is absent in α-cyanobacteria. Moreover, we show that two distinct McdAB systems exist in ß-cyanobacteria, with Type 2 systems being the most ancestral and abundant, and Type 1 systems, like that of S. elongatus, possibly being acquired more recently. Lastly, all McdB proteins share the sequence signatures of a protein capable of undergoing liquid-liquid phase separation. Indeed, we find that representatives of both McdB types undergo liquid-liquid phase separation in vitro, the first example of a ParA-type ATPase partner protein to exhibit this behavior. Our results have broader implications for understanding carboxysome evolution, biogenesis, homeostasis, and positioning in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Cianobactérias/genética , Estruturas Citoplasmáticas , Ciclo do Carbono , Synechococcus
4.
Mol Microbiol ; 109(3): 268-272, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885047

RESUMO

In many rod-shaped bacteria, the Min system is well-known for generating a cell-pole to cell-pole standing wave oscillation with a single node at mid-cell to align cell division. In filamentous E. coli cells, the single-node standing wave transitions into a multi-nodal oscillation. These multi-nodal dynamics have largely been treated simply as an interesting byproduct of artificially elongated cells. However, a recent in vivo study by Muraleedharan et al. shows how multi-nodal Min dynamics are used to align non-mid-cell divisions in the elongated swarmer cells of Vibrio parahaemolyticus. The authors propose a model where the combined actions of cell-length dependent Min dynamics, in concert with nucleoid occlusion along the cell length and regulation of FtsZ levels ensures Z ring formation and complete chromosome segregation at a single off-center position. By limiting the number of cell division events to one per cell at an off-center position, long swarmer cells are preserved within a multiplying population. The findings unveil an elegant mechanism of cell-division regulation by the Min system that allows long swarmer cells to divide without the need to 'dedifferentiate'.


Assuntos
Escherichia coli , Vibrio parahaemolyticus , Bactérias , Proteínas de Bactérias/genética , Divisão Celular , Proteínas do Citoesqueleto/genética , Esporos Bacterianos
5.
Chembiochem ; 20(20): 2535-2545, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31177625

RESUMO

One of the primary challenges facing synthetic biology is reconstituting a living system from its component parts. A particularly difficult landmark is reconstituting a self-organizing system that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome can inform us of the core self-organizing principles of a living cell and how these self-organizing processes can be built from the bottom up. The review underscores the importance of fundamental biology in rebuilding life from its molecular constituents.


Assuntos
Células Artificiais/citologia , Divisão Celular , Cromossomos , Biologia Sintética
6.
Proc Natl Acad Sci U S A ; 113(11): E1479-88, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884160

RESUMO

The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Sistema Livre de Células , Citoplasma/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas , Microscopia de Fluorescência , Multimerização Proteica
7.
Phys Biol ; 15(3): 031001, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188788

RESUMO

The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Membrana Celular/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Fenômenos Biomecânicos
8.
Proc Natl Acad Sci U S A ; 112(51): E7055-64, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26647183

RESUMO

The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.


Assuntos
DNA Primase/fisiologia , Proteínas de Escherichia coli/fisiologia , Modelos Biológicos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Movimento/fisiologia , Plasmídeos/genética , Plasmídeos/metabolismo
9.
Biophys J ; 112(7): 1489-1502, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402891

RESUMO

Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation.


Assuntos
Segregação de Cromossomos , Dosagem de Genes , Plasmídeos/genética , Modelos Biológicos , Movimento
10.
EMBO J ; 32(9): 1238-49, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23443047

RESUMO

DNA segregation ensures the stable inheritance of genetic material prior to cell division. Many bacterial chromosomes and low-copy plasmids, such as the plasmids P1 and F, employ a three-component system to partition replicated genomes: a partition site on the DNA target, typically called parS, a partition site binding protein, typically called ParB, and a Walker-type ATPase, typically called ParA, which also binds non-specific DNA. In vivo, the ParA family of ATPases forms dynamic patterns over the nucleoid, but how ATP-driven patterning is involved in partition is unknown. We reconstituted and visualized ParA-mediated plasmid partition inside a DNA-carpeted flowcell, which acts as an artificial nucleoid. ParA and ParB transiently bridged plasmid to the DNA carpet. ParB-stimulated ATP hydrolysis by ParA resulted in ParA disassembly from the bridging complex and from the surrounding DNA carpet, which led to plasmid detachment. Our results support a diffusion-ratchet model, where ParB on the plasmid chases and redistributes the ParA gradient on the nucleoid, which in turn mobilizes the plasmid.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacteriófago P1/genética , DNA Bacteriano/genética , Fator F/genética , Modelos Biológicos , Proteínas Virais/metabolismo , Bacteriófago P1/metabolismo , Divisão Celular , DNA Bacteriano/metabolismo , Fator F/metabolismo , Hidrólise , Cinética , Ligação Proteica , Multimerização Proteica , Imagem com Lapso de Tempo
11.
Proc Natl Acad Sci U S A ; 111(13): 4880-5, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24567408

RESUMO

The faithful segregation of duplicated genetic material into daughter cells is critical to all organisms. In many bacteria, the segregation of chromosomes involves transport of "centromere-like" loci over the main body of the chromosome, the nucleoid, mediated by a two-protein partition system: a nonspecific DNA-binding ATPase, ParA, and an ATPase stimulator, ParB, which binds to the centromere-like loci. These systems have previously been proposed to function through a filament-based mechanism, analogous to actin- or microtubule-based movement. Here, we reconstituted the F-plasmid partition system using a DNA-carpeted flow cell as an artificial nucleoid surface and magnetic beads coated with plasmid partition complexes as surface-confined cargo. This minimal system recapitulated directed cargo motion driven by a surface ATPase gradient that propagated with the cargo. The dynamics are consistent with a diffusion-ratchet model, whereby the cargo dynamically establishes, and interacts with, a concentration gradient of the ATPase. A chemophoresis force ensues as the cargo perpetually chases the ATPase gradient, allowing the cargo to essentially "surf" the nucleoid on a continuously traveling wave of the ATPase. Demonstration of this non-filament-based motility mechanism in a biological context establishes a distinct class of motor system used for the transport and positioning of large cellular cargo.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico , DNA Bacteriano/metabolismo , Difusão , Modelos Biológicos , Plasmídeos/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(15): E1390-7, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23479605

RESUMO

Increasingly diverse types of cargo are being found to be segregated and positioned by ParA-type ATPases. Several minimalistic systems described in bacteria are self-organizing and are known to affect the transport of plasmids, protein machineries, and chromosomal loci. One well-studied model is the F plasmid partition system, SopABC. In vivo, SopA ATPase forms dynamic patterns on the nucleoid in the presence of the ATPase stimulator, SopB, which binds to the sopC site on the plasmid, demarcating it as the cargo. To understand the relationship between nucleoid patterning and plasmid transport, we established a cell-free system to study plasmid partition reactions in a DNA-carpeted flowcell. We observed depletion zones of the partition ATPase on the DNA carpet surrounding partition complexes. The findings favor a diffusion-ratchet model for plasmid motion whereby partition complexes create an ATPase concentration gradient and then climb up this gradient toward higher concentrations of the ATPase. Here, we report on the dynamic properties of the Sop system on a DNA-carpet substrate, which further support the proposed diffusion-ratchet mechanism.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Plasmídeos/metabolismo , Citoesqueleto de Actina/química , Actinas/metabolismo , Trifosfato de Adenosina/química , Bactérias/metabolismo , Transporte Biológico , Sistema Livre de Células/metabolismo , Cromossomos/ultraestrutura , DNA/química , Difusão , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microfluídica , Microtúbulos/metabolismo , Movimento (Física) , Propriedades de Superfície
13.
Mol Microbiol ; 93(3): 453-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24930948

RESUMO

The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Divisão Celular , Proteínas de Escherichia coli/química , Fosfolipídeos/química
14.
J Biol Chem ; 288(24): 17823-31, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632076

RESUMO

The segregation, or partition, of bacterial plasmids is driven by the action of plasmid-encoded partition ATPases, which work to position plasmids inside the cell. The most common type of partition ATPase, generally called ParA, is represented by the P1 plasmid ParA protein. ParA interacts with P1 ParB (the site-specific DNA binding protein that recognizes the parS partition site), and interacts with the bacterial chromosome via an ATP-dependent nonspecific DNA binding activity. ParA also regulates expression of the par genes by acting as a transcriptional repressor. ParA requires ATP for multiple steps and in different ways during the partition process. Here, we analyze the properties of mutations in P1 ParA that are altered in a key lysine in the Walker A motif of the ATP binding site. Four different residues at this position (Lys, Glu, Gln, Arg) result in four different phenotypes in vivo. We focus particularly on the arginine substitution (K122R) because it results in a worse-than-null and dominant-negative phenotype called ParPD. We show that ParAK122R binds and hydrolyzes ATP, although the latter activity is reduced compared with wild-type. ParAK122R interacts with ParB, but the consequences of the interaction are damaged. The ability of ParB to stimulate the ATPase activity of ParA in vitro and its repressor activity in vivo is defective. The K122R mutation specifically damages the disassembly of ParA-ParB-DNA partition complexes, which we believe explains the ParPD phenotype in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Plasmídeos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Substituição de Aminoácidos , Domínio Catalítico , DNA Primase/química , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Fenótipo , Plasmídeos/genética , Regiões Promotoras Genéticas , Ligação Proteica
15.
Nucleic Acids Res ; 40(2): 801-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21965538

RESUMO

Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/metabolismo , Adenosina Trifosfatases/metabolismo , Luz , Conformação Proteica , Espalhamento de Radiação
16.
Curr Opin Microbiol ; 79: 102485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723344

RESUMO

The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.


Assuntos
Adenosina Trifosfatases , Archaea , Bactérias , Proteínas de Bactérias , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Archaea/genética , Archaea/enzimologia , Archaea/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Segregação de Cromossomos
17.
Mol Biol Cell ; 35(8): ar107, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922842

RESUMO

Bacterial microcompartments (BMCs) are widespread, protein-based organelles that regulate metabolism. The model for studying BMCs is the carboxysome, which facilitates carbon fixation in several autotrophic bacteria. Carboxysomes can be distinguished as type α or ß, which are structurally and phyletically distinct. We recently characterized the maintenance of carboxysome distribution (Mcd) systems responsible for spatially regulating α- and ß-carboxysomes, consisting of the proteins McdA and McdB. McdA is an ATPase that drives carboxysome positioning, and McdB is the adaptor protein that directly interacts with carboxysomes to provide cargo specificity. The molecular features of McdB proteins that specify their interactions with carboxysomes, and whether these are similar between α- and ß-carboxysomes, remain unknown. Here, we identify C-terminal motifs containing an invariant tryptophan necessary for α- and ß-McdBs to associate with α- and ß-carboxysomes, respectively. Substituting this tryptophan with other aromatic residues reveals corresponding gradients in the efficiency of carboxysome colocalization and positioning by McdB in vivo. Intriguingly, these gradients also correlate with the ability of McdB to form condensates in vitro. The results reveal a shared mechanism underlying McdB adaptor protein binding to carboxysomes, and potentially other BMCs. Our findings also implicate condensate formation as playing a key role in this association.


Assuntos
Proteínas de Bactérias , Triptofano , Triptofano/metabolismo , Proteínas de Bactérias/metabolismo , Organelas/metabolismo , Ciclo do Carbono , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos
18.
Nat Commun ; 15(1): 3222, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622124

RESUMO

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.


Assuntos
Condensados Biomoleculares , Proteínas de Escherichia coli , Bactérias/genética , Escherichia coli/genética , Agregados Proteicos , Projetos de Pesquisa , Proteínas de Choque Térmico
19.
Mol Microbiol ; 86(3): 513-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22934804

RESUMO

The ParA family of ATPases is responsible for transporting bacterial chromosomes, plasmids and large protein machineries. ParAs pattern the nucleoid in vivo, but how patterning functions or is exploited in transport is of considerable debate. Here we discuss the process of self-organization into patterns on the bacterial nucleoid and explore how it relates to the molecular mechanism of ParA action. We review ParA-mediated DNA partition as a general mechanism of how ATP-driven protein gradients on biological surfaces can result in spatial organization on a mesoscale. We also discuss how the nucleoid acts as a formidable diffusion barrier for large bodies in the cell, and make the case that the ParA family evolved to overcome the barrier by exploiting the nucleoid as a matrix for movement.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Transporte Proteico
20.
Plasmid ; 70(1): 86-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23428603

RESUMO

Plasmid partition systems require site-specific DNA binding proteins to recognize the plasmid partition site, or centromere. When bound to the centromere, these proteins, typically called ParB, interact with the ParA ATPases, which in turn promote the proper positioning of plasmids prior to cell division. P1 ParB is a typical member of a major class of ParB-like proteins that are dimeric helix-turn-helix DNA binding proteins. The N-terminus of ParB contains the region that interacts with ParA and with itself, but it has been difficult to study because this region of the protein is flexible in solution. Here we describe the use of cysteine-scanning mutagenesis and thiol modification of the N-terminus of ParB to create tools to probe the interactions of ParB with itself, with ParA and with DNA. We introduce twelve single-cysteine substitutions across the N-terminus of ParB and show that most do not compromise the function of ParB and that none completely inactivate the protein in vivo. We test three of these ParB variants in vitro and show that they do not alter ParB function, measured by its ability to stimulate ParA ATPase activity and its site-specific DNA binding activity. We discuss that this approach will be generally applicable to the ParB-like proteins in this class of partition systems because of their natural low content of cysteines, and because our evidence suggests that many residues in the N-terminus are amenable to substitution by cysteine.


Assuntos
Cisteína/genética , DNA Primase/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Elementos Antissenso (Genética)/metabolismo , Sequência de Bases , Sítios de Ligação , Cisteína/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Iniciação Traducional da Cadeia Peptídica , Plasmídeos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA