RESUMO
Psoriatic Arthritis (PsA) is a complex polygenic inflammatory disease showing a variable musculoskeletal involvement in patients with skin psoriasis. PsA coexist in 25-40 % of patients with the dermatological manifestations, but PsA may also predate the appearance of psoriasis. Nonetheless, the immunopathogenesis of psoriasis and PsA manifest significant similarities, with a major role of the individual susceptibility in both cases. Genome wide association studies (GWAS) identified several genes/loci associated with the risk to develop PsA, both dependent and independent of psoriasis. The major challenge is thus represented by the need to translate the identification of functional polymorphisms and other genetics findings into biological mechanisms along with the identification of novel putative drug targets. A functional genomics approach aims to increase GWAS power and recent evidence supports the use of a multilayer process, including eQTL, methylome, chromatin conformation analysis and genome editing to discover novel genes that can be affected by disease-associated variants, such as PsA. The available data have considered PsA as a unique homogeneous clinical entity while the clinical experience supports a wide variability of skin and joint manifestations coexisting in diverse patients with different mechanisms underlying the musculoskeletal and dermatological domains. A better discrimination of the patient features is encouraged by the limited data on functional genomics. We provide herein a review of the latest findings on PsA functional genomics highlighting the exciting developments in the field and how these might lead to a better understanding of gene regulation underpinning disease mechanisms and ultimately refine clinical phenotyping.
Assuntos
Artrite Psoriásica , Psoríase , Humanos , Artrite Psoriásica/genética , Artrite Psoriásica/patologia , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Psoríase/genética , GenômicaRESUMO
Tofacitinib is an oral small molecule targeting the intracellular Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways approved for the treatment of active rheumatoid arthritis (RA). We investigated the effects of tofacitinib on the response of RA lymphocytes to B and T cell collagen epitopes in their native and post-translationally modified forms. In particular, peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy subjects were cultured with type II collagen peptides (T261-273, B359-369, carT261-273, citB359-369) or with phorbol myristate acetate (PMA)/ionomycin/CD40L in the presence or absence of 100 nM tofacitinib for 20 h and analyzed by fluorescence activated cell sorter (FACS). Cultures without brefeldin A were used for cytokine supernatant enzyme-linked immunosorbent assay (ELISA) analysis. Tofacitinib down-regulated inflammatory cytokines by stimulated B [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] and T [interferon (IFN)-γ, IL-17 or TNF-α] cells in the short term, while a significant reduction of IL-17 and IL-6 levels in peripheral blood mononuclear cell (PBMC) supernatant was also observed. IL-10 was significantly reduced in collagen-stimulated B cells from patients with RA and increased in controls, thus mirroring an altered response to collagen self-epitopes in RA. Tofacitinib partially prevented the IL-10 down-modulation in RA B cells stimulated with collagen epitopes. In conclusion, the use of tofacitinib exerts a rapid regulatory effect on B cells from patients with RA following stimulation with collagen epitopes while not reducing inflammatory cytokine production by lymphocytes.
Assuntos
Artrite Reumatoide/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Idoso , Artrite Reumatoide/metabolismo , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Epitopos de Linfócito T/efeitos dos fármacos , Epitopos de Linfócito T/metabolismo , Feminino , Humanos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismoRESUMO
PURPOSE OF REVIEW: To highlight the recent discoveries and lines of evidence on the role of microRNAs in ankylosing spondylitis (AS) and psoriatic arthritis (PsA), focusing on their expression profiling and mechanisms of action. RECENT FINDINGS: AS and PsA are chronic inflammatory musculoskeletal diseases with axial manifestations and represent an excellent model for studying microRNAs contribution to the disease pathogenesis, particularly through immunomodulation, inflammation, and bone remodelling, or their value as candidate diagnostic and prognostic biomarkers. MicroRNAs are single-stranded nucleotides able to regulate gene expression. They are a key component of the epigenetic machinery, involved in physiological and pathological processes. The contribution of microRNAs in AS and PsA (such as miR-29a in regulating bone metabolism) is highlighted by several works in the field but their utility as possible markers must be still confirmed, particularly in larger patients' cohorts.
Assuntos
Artrite Psoriásica , MicroRNAs , Espondilartrite , Espondilite Anquilosante , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/genética , Biomarcadores , Humanos , MicroRNAs/genética , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/genéticaRESUMO
We investigated the proposal that ankylosing spondylitis (AS) is associated with unusual ERAP1 genotypes. ERAP1 haplotypes were constructed for 213 AS cases and 46 rheumatoid arthritis controls using family data. Haplotypes were generated from five common ERAP1 single nucleotide polymorphisms (SNPs)-rs2287987 (M349V), rs30187 (K528R), rs10050860 (D575N), rs17482078 (R725Q), and rs27044 (Q730E). Haplotype frequencies were compared using Fisher's exact test. ERAP1 haplotypes imputed from the International Genetics of AS Consortium (IGAS) Immunochip study were also studied. In the family study, we identified only four common ERAP1 haplotypes ("VRNQE," "MKDRQ," "MRDRE," and "MKDRE") in both AS cases and controls apart from two rare (<0.5%) previously unreported haplotypes. There were no examples of the unusual ERAP1 haplotype combination ("*001/*005") previously reported by others in 53% of AS cases. As expected, K528-bearing haplotypes were increased in the AS family study (AS 43% vs. control 35%), due particularly to an increase in the MKDRQ haplotype (AS 35% vs. control 25%, P = 0.01). This trend was replicated in the imputed Immunochip data for the two K528-bearing haplotypes MKDRQ (AS 33% vs. controls 27%, P = 1.2 × 10-24) and MKDRE (AS 8% vs. controls 7%, P = 0.004). The ERAP1 association with AS is therefore predominantly attributable to common ERAP1 haplotypes and haplotype combinations.
Assuntos
Aminopeptidases/genética , Antígenos de Histocompatibilidade Menor/genética , Espondilite Anquilosante/genética , Artrite Reumatoide/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Antígeno HLA-B27/genética , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Espondilite Anquilosante/enzimologia , Espondilite Anquilosante/imunologiaRESUMO
Genetic polymorphism (rs1800693) of TNFRSF1A (type 1 tumour necrosis factor receptor) encodes a potentially anti-inflammatory soluble truncated form of the p55 receptor, which is associated with predisposition to multiple sclerosis but protection against ankylosing spondylitis (AS). We analysed 2917 UK Caucasian cases by linear and logistic regression for associations of rs1800693 with disease severity assessed by the Bath Ankylosing Spondylitis measures of disease activity and function (BASDAI, BAS-G and BASFI) and/or responses to anti-TNF therapy. In contrast to predictions, rs1800693 GG homozygotes actually had significantly worse BASDAI (mean 4.2, 95% CI: 4-4.5) than AA homozygotes (mean 3.8, 95% CI: 3.7-4) in both the unadjusted (difference = 0.4, p = 0.006) and adjusted analyses (difference = 0.2-0.5, p = 0.002-0.04 depending on the adjustment model). We found no evidence that rs1900693 predicted functional status (BASFI) or global disease scores (BAS-G), and it exerted no influence on either the intention to treat with or efficacy of anti-TNF treatment.
Assuntos
Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Espondilite Anquilosante/genética , Adulto , Idoso , Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espondilite Anquilosante/tratamento farmacológicoRESUMO
PURPOSE OF REVIEW: To assess the utility of recent genetic findings in ankylosing spondylitis (AS) and axial spondyloarthropathy (SpA) in relation to diagnostic testing, prognosis and responses to biologic treatment and the development of new therapies. RECENT FINDINGS: AS and other forms of SpA are polygenic with more than 100 genes contributing to disease susceptibility. The role of genes in determining the outcome of the disease and response to treatment is less clear. Here, we review some of the progress that has been made over the past decade in understanding the genetic contribution to these diseases and how this may be used to inform the development of new treatments. In those with a high pretest probability of SpA human leukocyte antigen (HLA)-B27 testing can increase the posttest predictive value to almost 100% in some cases. There are currently no reliable genetic predictors of disease severity or response to treatment. SUMMARY: The utility of HLA-B27 as a diagnostic tool when coupled with careful clinical assessment is well established but other genetic markers probably have relatively little to add. In contrast, novel drug targets are likely to be identified from genetic association studies.
Assuntos
Antígeno HLA-B27/genética , Espondiloartropatias/diagnóstico , Marcadores Genéticos/genética , Humanos , Fatores de Risco , Espondiloartropatias/genéticaRESUMO
Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.
Assuntos
Benzimidazóis/farmacologia , Imunossupressores/farmacologia , Interleucina-17/metabolismo , Isoxazóis/farmacologia , Células Th17/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Adulto , Idoso , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Azepinas/farmacologia , Benzimidazóis/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Calorimetria , Células Cultivadas , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunossupressores/química , Interleucina-17/biossíntese , Interleucina-17/genética , Isoxazóis/química , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Espondilite Anquilosante/metabolismo , Espondilite Anquilosante/patologia , Relação Estrutura-Atividade , Células Th17/imunologia , Triazóis/farmacologiaRESUMO
OBJECTIVES: To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). METHODS: We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. RESULTS: The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10(-14)) was robust to conditioning on all other SNPs in this region. We identified a 2â kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 'G' allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk 'A' allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). CONCLUSION: We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS.
Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Fatores Reguladores de Interferon/metabolismo , Espondilite Anquilosante/genética , Adulto , Idoso , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Genes Reporter , Predisposição Genética para Doença , Técnicas de Genotipagem/métodos , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Espondilite Anquilosante/imunologia , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVES: To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region. METHODS: We performed conditional analysis on genetic association data and used epigenetic data on chromatin remodelling and transcription factor (TF) binding to identify the primary AS-associated IL23R-IL12RB2 intergenic SNP. Functional effects were tested in luciferase reporter assays in HEK293T cells and allele-specific TF binding was investigated by electrophoretic mobility gel shift assays. IL23R and IL12RB2 mRNA levels in CD4+ T cells were compared between cases homozygous for the AS-risk 'A' allele and the protective 'G' allele. The proportions of interleukin (IL)-17A+ and interferon (IFN)-γ+ CD4+ T-cells were measured by fluorescence-activated cell sorting and compared between these AS-risk and protective genotypes. RESULTS: Conditional analysis identified rs11209032 as the probable causal SNP within a 1.14â kb putative enhancer between IL23R and IL12RB2. Reduced luciferase activity was seen for the risk allele (p<0.001) and reduced H3K4me1 methylation observed in CD4+ T-cells from 'A/A' homozygotes (p=0.02). The binding of nuclear extract to the risk allele was decreased â¼3.5-fold compared with the protective allele (p<0.001). The proportion of IFN-γ+ CD4+ T-cells was increased in 'A/A' homozygotes (p=0.004), but neither IL23R nor IL12RB2 mRNA was affected. CONCLUSIONS: The rs11209032 SNP downstream of IL23R forms part of an enhancer, allelic variation of which may influence Th1-cell numbers. Homozygosity for the risk 'A' allele is associated with more IFN-γ-secreting (Th1) cells. Further work is necessary to explain the mechanisms for these important observations.
Assuntos
Diferenciação Celular/genética , Receptores de Interleucina-12/genética , Receptores de Interleucina/genética , Espondilite Anquilosante/genética , Células Th1/fisiologia , Adulto , Alelos , DNA Intergênico , Feminino , Citometria de Fluxo , Estudos de Associação Genética , Variação Genética , Genótipo , Células HEK293 , Humanos , Masculino , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Histone deacetylase inhibitors (DIs) are promising drugs for the treatment of several pathologies including ischemic and failing heart where they demonstrated efficacy. However, adverse side effects and cardiotoxicity have also been reported. Remarkably, no information is available about the effect of DIs during tissue regeneration following acute peripheral ischemia. In this study, mice made ischemic by femoral artery excision were injected with the DIs MS275 and MC1568, selective for class I and IIa histone deacetylases (HDACs), respectively. In untreated mice, soon after damage, class IIa HDAC phosphorylation and nuclear export occurred, paralleled by dystrophin and neuronal nitric-oxide synthase (nNOS) down-regulation and decreased protein phosphatase 2A activity. Between 14 and 21 days after ischemia, dystrophin and nNOS levels recovered, and class IIa HDACs relocalized to the nucleus. In this condition, the MC1568 compound increased the number of newly formed muscle fibers but delayed their terminal differentiation, whereas MS275 abolished the early onset of the regeneration process determining atrophy and fibrosis. The selective DIs had differential effects on the vascular compartment: MC1568 increased arteriogenesis whereas MS275 inhibited it. Capillarogenesis did not change. Chromatin immunoprecipitations revealed that class IIa HDAC complexes bind promoters of proliferation-associated genes and of class I HDAC1 and 2, highlighting a hierarchical control between class II and I HDACs during tissue regeneration. Our findings indicate that class-selective DIs interfere with normal mouse ischemic hindlimb regeneration and suggest that their use could be limited by alteration of the regeneration process in peripheral ischemic tissues.
Assuntos
Benzamidas/efeitos adversos , Membro Posterior/irrigação sanguínea , Inibidores de Histona Desacetilases/efeitos adversos , Ácidos Hidroxâmicos/efeitos adversos , Isquemia , Músculo Esquelético , Piridinas/efeitos adversos , Pirróis/efeitos adversos , Regeneração/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Distrofina/metabolismo , Membro Posterior/metabolismo , Membro Posterior/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Fosfatase 2/metabolismo , Piridinas/farmacologia , Pirróis/farmacologia , Fatores de TempoRESUMO
Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5' splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities.
Assuntos
Transtorno Autístico/complicações , Anormalidades Craniofaciais/complicações , Epilepsia/complicações , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Transtorno Autístico/genética , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Anormalidades Craniofaciais/genética , Análise Mutacional de DNA , Regulação para Baixo/genética , Epilepsia/genética , Feminino , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Neurônios/patologia , Especificidade de Órgãos/genética , Linhagem , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Sinapses/genéticaRESUMO
Chorion, amnion and villi are reservoirs of mesenchymal stromal cells (StC) and the hypothesis that StC from fetal tissues retain higher plasticity compared to adult StC has been suggested. Aimed at investigating this aspect, a series of in vitro experiments were performed with StC isolated from first trimester human chorionic villi (CVStC). CVStC were cultured in: (i) standard mesenchymal medium (MM) and (ii) AmniomaxII® (AM), specifically designed to grow amnion-derived cells in prenatal diagnostic procedures. Cells were then exposed to distinct differentiation treatments and distinguished according to morphology, immunophenotype and molecular markers. Human StC obtained from adult bone marrow (BMStC) were used as control. CVStC cultured either in MM or AM presented stromal morphology and immunophenotype, were negative for pluripotency factors (Nanog, Oct-4 and Sox-2), lacked detectable telomerase activity and retained high genomic stability. In AM, however, CVStC exhibited a faster proliferation rate compared to BMStC or CVStC kept in MM. During differentiation, CVStC were less efficient than BMStC in acquiring adipocytes and osteocytes features; the cardiomyogenic conversion occurred at low efficiency in both cell types. Remarkably, in the presence of pro-angiogenic factors, CVStC reprogrammed toward an endothelial-like phenotype at significantly higher efficiency than BMStC. This effect was particularly evident in CVStC expanded in AM. Mechanistically, the reduced CVStC expression of anti-angiogenic microRNA could support this process. The present study demonstrates that, despite of fetal origin, CVStC exhibit restricted plasticity, distinct from that of BMStC and predominantly directed toward the endothelial lineage.
Assuntos
Diferenciação Celular , Linhagem da Célula , Meios de Cultura , Endotélio/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Medula Óssea/crescimento & desenvolvimento , Proliferação de Células , Vilosidades Coriônicas/crescimento & desenvolvimento , Endotélio/citologia , Instabilidade Genômica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Telomerase/metabolismoRESUMO
Regulatory T cells (Tregs) are a very specialized subset of T lymphocytes: their main function is controlling immune responses during inflammation. T-regs involvement in autoimmune and immune-mediated rheumatic diseases is well-described. Here, we critically review the up-to-date literature findings on the role of Tregs in spondyloarthropathies, particularly in ankylosing spondylitis (AS), a polygenic inflammatory rheumatic disease that preferentially affects the spine and the sacroiliac joints. Genetics discoveries helped in elucidating pathogenic T-regs gene modules and functional involvement. We highlight T-regs tissue specificity as crucial point, as T-regs might have a distinct epigenomic and molecular profiling depending on the different site of tissue inflammation. Furthermore, we speculate about possible therapeutic interventions targeting, or enhancing, Treg cells in spondyloarthropathies.
Assuntos
Espondiloartropatias , Espondilite Anquilosante , Humanos , Linfócitos T Reguladores , Espondiloartropatias/genética , Espondiloartropatias/terapia , Espondilite Anquilosante/genética , Espondilite Anquilosante/terapia , Inflamação , Coluna VertebralRESUMO
Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.
RESUMO
Background: The impact of a multidisciplinary management of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and psoriasis on systemic glucocorticoids or innovative treatments remains unknown. Rule-based natural language processing and text extraction help to manage large datasets of unstructured information and provide insights into the profile of treatment choices. Methods: We obtained structured information from text data of outpatient visits between 2017 and 2022 using regular expressions (RegEx) to define elastic search patterns and to consider only affirmative citation of diseases or prescribed therapy by detecting negations. Care processes were described by binary flags which express the presence of RA, PsA and psoriasis and the prescription of glucocorticoids and biologics or small molecules in each cases. Logistic regression analyses were used to train the classifier to predict outcomes using the number of visits and the other specialist visits as the main variables. Results: We identified 1743 patients with RA, 1359 with PsA and 2,287 with psoriasis, accounting for 5,677, 4,468 and 7,770 outpatient visits, respectively. Among these, 25% of RA, 32% of PsA and 25% of psoriasis cases received biologics or small molecules, while 49% of RA, 28% of PsA, and 40% of psoriasis cases received glucocorticoids. Patients evaluated also by other specialists were treated more frequently with glucocorticoids (70% vs. 49% for RA, 60% vs. 28% for PsA, 51% vs. 40% for psoriasis; p < 0.001) as well as with biologics/small molecules (49% vs. 25% for RA, 64% vs. 32% in PsA; 51% vs. 25% for psoriasis; p < 0.001) compared to cases seen only by the main specialist. Conclusion: Patients with RA, PsA, or psoriasis undergoing multiple evaluations are more likely to receive innovative treatments or glucocorticoids, possibly reflecting more complex cases.
RESUMO
Psoriatic arthritis (PsA) is a chronic inflammatory condition characterized by psoriasis, synovitis, enthesitis, spondylitis, and the possible association with other extra-articular manifestations and comorbidities. It is a multifaceted and systemic disorder sustained by complex pathogenesis, combining aspects of autoinflammation and autoimmunity. Features of PsA autoinflammation include the role of biomechanical stress in the onset and/or exacerbation of the disease; the evidence of involvement of the innate immune response mediators in the skin, peripheral blood and synovial tissue; an equal gender distribution; the clinical course which may encounter periods of prolonged remission and overlapping features with autoinflammatory syndromes. Conversely, the role of autoimmunity is evoked by the association with class I major histocompatibility complex alleles, the polyarticular pattern of the disease which sometimes resembles rheumatoid arthritis and the presence of serum autoantibodies. Genetics also provide important insights into the pathogenesis of PsA, particularly related to class I HLA being associated with psoriasis and PsA. In this review, we provide a comprehensive review of the pathogenesis, genetics and clinical features of PsA that endorse the mixed nature of a disorder at the crossroads of autoinflammation and autoimmunity.
Assuntos
Artrite Psoriásica , Artrite Reumatoide , Psoríase , Humanos , Artrite Psoriásica/genética , Autoimunidade , Pele/patologiaRESUMO
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 genetic associations whose functional effects remain largely unresolved. Here, we present a comprehensive transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific differences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regulation of likely pathogenic relevance and prioritize drug targets.
RESUMO
The Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) held a trainee symposium at its 2021 virtual meeting. Dermatology and rheumatology trainees presented their work on psoriasis and psoriatic arthritis (PsA). This report briefly reviews 5 oral presentations: prediction of cardiovascular events in psoriatic disease (PsD), correlation between spine abnormalities and clinical findings, biomechanical stress as a trigger for PsA, differences in DNA methylation among twins with PsD, and critical proteins associated with induction of PsD. In addition, we highlight 22 posters broadly discussing clinical and molecular implications of PsD.