Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Trends Biochem Sci ; 48(11): 949-962, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716870

RESUMO

Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.


Assuntos
Senescência Celular , Oxirredução
2.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502125

RESUMO

Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Suscetibilidade a Doenças , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Doenças Neurodegenerativas/patologia , Transporte Proteico
3.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704069

RESUMO

Nuclear pore complexes (NPCs) are large protein complexes embedded in the nuclear envelope separating the cytoplasm from the nucleoplasm in eukaryotic cells. They function as selective gates for the transport of molecules in and out of the nucleus. The inner wall of the NPC is coated with intrinsically disordered proteins rich in phenylalanine-glycine repeats (FG-repeats), which are responsible for the intriguing selectivity of NPCs. The phosphorylation state of the FG-Nups is controlled by kinases and phosphatases. In the current study, we extended our one-bead-per-amino-acid (1BPA) model for intrinsically disordered proteins to account for phosphorylation. With this, we performed molecular dynamics simulations to probe the effect of phosphorylation on the Stokes radius of isolated FG-Nups, and on the structure and transport properties of the NPC. Our results indicate that phosphorylation causes a reduced attraction between the residues, leading to an extension of the FG-Nups and the formation of a significantly less dense FG-network inside the NPC. Furthermore, our simulations show that upon phosphorylation, the transport rate of inert molecules increases, while that of nuclear transport receptors decreases, which can be rationalized in terms of modified hydrophobic, electrostatic, and steric interactions. Altogether, our models provide a molecular framework to explain how extensive phosphorylation of FG-Nups decreases the selectivity of the NPC.


Assuntos
Simulação de Dinâmica Molecular , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Interações Hidrofóbicas e Hidrofílicas , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação
4.
Traffic ; 16(2): 135-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25409870

RESUMO

Membrane junctions or contact sites are close associations of lipid bilayers of heterologous organelles. Ist2 is an endoplasmic reticulum (ER)-resident transmembrane protein that mediates associations between the plasma membrane (PM) and the cortical ER (cER) in baker's yeast. We asked the question what structure in Ist2 bridges the up to 30 nm distance between the PM and the cER and we noted that the region spacing the transmembrane domain from the cortical sorting signal interacting with the PM is predicted to be intrinsically disordered (ID). In Ssy1, a protein that was not previously described to reside at membrane junctions, we recognized a domain organization similar to that in Ist2. We found that the localization of both Ist2 and Ssy1 at the cell periphery depends on the presence of a PM-binding domain, an ID linker region of sufficient length and a transmembrane domain that most probably resides in the ER. We show for the first time that an ID amino acid domain bridges adjacent heterologous membranes. The length and flexibility of ID domains make them uniquely eligible for spanning large distances, and we suggest that this domain structure occurs more frequently in proteins that mediate the formation of membrane contact sites.


Assuntos
Membrana Celular/metabolismo , Junções Intercelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Traffic ; 14(5): 487-501, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357007

RESUMO

Nuclear transport of the Saccharomyces cerevisiae membrane proteins Src1/Heh1 and Heh2 across the NPC is facilitated by a long intrinsically disordered linker between the nuclear localization signal (NLS) and the transmembrane domain. The import of reporter proteins derived from Heh2 is dependent on the FG-Nups in the central channel, and the linker can position the transport factor-bound NLS in the vicinity of the FG-Nups in the central channel, while the transmembrane segment resides in the pore membrane. Here, we present a quantitative analysis of karyopherin-mediated import and passive efflux of reporter proteins derived from Heh2, including data on the mobility of the reporter proteins in different membrane compartments. We show that membrane proteins with extralumenal domains up to 174 kDa, terminal to the linker and NLS, passively leak out of the nucleus via the NPC, albeit at a slow rate. We propose that also during passive efflux, the unfolded linker facilitates the passage of extralumenal domains through the central channel of the NPC.


Assuntos
Proteínas de Membrana/fisiologia , Sinais de Localização Nuclear , Poro Nuclear/metabolismo , Proteínas Nucleares/fisiologia , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Difusão , Genes Reporter , Carioferinas/metabolismo , Microscopia de Fluorescência , Estrutura Terciária de Proteína
6.
Biophys J ; 107(6): 1393-402, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229147

RESUMO

The distribution of disordered proteins (FG-nups) that line the transport channel of the nuclear pore complex (NPC) is investigated by means of coarse-grained molecular dynamics simulations. A one-bead-per-amino-acid model is presented that accounts for the hydrophobic/hydrophilic and electrostatic interactions between different amino acids, polarity of the solvent, and screening of free ions. The results indicate that the interaction of the FG-nups forms a high-density, doughnut-like distribution inside the NPC, which is rich in FG-repeats. We show that the obtained distribution is encoded in the amino-acid sequence of the FG-nups and is driven by both electrostatic and hydrophobic interactions. To explore the relation between structure and function, we have systematically removed different combinations of FG-nups from the pore to simulate inviable and viable NPCs that were previously studied experimentally. The obtained density distributions show that the maximum density of the FG-nups inside the pore does not exceed 185 mg/mL in the inviable NPCs, whereas for the wild-type and viable NPCs, this value increases to 300 mg/mL. Interestingly, this maximum density is not correlated to the total mass of the FG-nups, but depends sensitively on the specific combination of essential Nups located in the central plane of the NPC.


Assuntos
Simulação de Dinâmica Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Sobrevivência Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Sequências Repetitivas de Aminoácidos , Eletricidade Estática
7.
Nature ; 450(7170): 683-94, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046405

RESUMO

To understand the workings of a living cell, we need to know the architectures of its macromolecular assemblies. Here we show how proteomic data can be used to determine such structures. The process involves the collection of sufficient and diverse high-quality data, translation of these data into spatial restraints, and an optimization that uses the restraints to generate an ensemble of structures consistent with the data. Analysis of the ensemble produces a detailed architectural map of the assembly. We developed our approach on a challenging model system, the nuclear pore complex (NPC). The NPC acts as a dynamic barrier, controlling access to and from the nucleus, and in yeast is a 50 MDa assembly of 456 proteins. The resulting structure, presented in an accompanying paper, reveals the configuration of the proteins in the NPC, providing insights into its evolution and architectural principles. The present approach should be applicable to many other macromolecular assemblies.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Sobrevivência Celular , Biologia Computacional , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Microscopia Imunoeletrônica , Modelos Biológicos , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Ligação Proteica , Proteômica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sensibilidade e Especificidade , Incerteza
8.
Nature ; 450(7170): 695-701, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046406

RESUMO

Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC's 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of 'columns'. These findings provide clues to the evolutionary origins of the NPC.


Assuntos
Poro Nuclear/química , Poro Nuclear/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Evolução Molecular , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
9.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36689194

RESUMO

While our understanding of the nuclear pore complex (NPC) structure is progressing spectacularly, the organizational principles of its nuclear basket remain elusive. In this issue, King et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202204039) provide new insights into the mechanisms that govern nuclear basket reorganization during meiosis.


Assuntos
Núcleo Celular , Meiose , Poro Nuclear
10.
FEBS Lett ; 597(22): 2739-2749, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37715940

RESUMO

The integrity of the nuclear envelope depends on the function of nuclear pore complexes (NPCs), transport channels that control macromolecular traffic between the nucleus and cytosol. The central importance of NPCs suggests the existence of quality control (QC) mechanisms that oversee their assembly and function. In this perspective, we emphasize the challenges associated with NPC assembly and the need for QC mechanisms that operate at various stages of an NPC's life. This includes cytosolic preassembly QC that helps enforce key nucleoporin-nucleoporin interactions and their ultimate stoichiometry in the NPC in addition to mechanisms that monitor aberrant fusion of the inner and outer nuclear membranes. Furthermore, we discuss whether and how these QC mechanisms may operate to sense faulty mature NPCs to facilitate their repair or removal. The so far uncovered mechanisms for NPC QC provide fertile ground for future research that not only benefits a better understanding of the vital role that NPCs play in cellular physiology but also how loss of NPC function and/or these QC mechanisms might be an input to aging and disease.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Membrana Nuclear
11.
Nucleus ; 14(1): 2240139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498221

RESUMO

Selective transport through the nuclear pore complex (NPC) depends on the dynamic binding of FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol (1,6HD) disrupts the permeability barrier of NPCs in live baker's yeast cells. After a 10-minute exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP levels, or the appearance of organelles. However, effects on the cytoskeleton and Hsp104 were noted. 1,6HD clearly affected the NPC permeability barrier, allowing passive nuclear entry of a 177kDa reporter protein that is normally confined to the cytosol. Moreover, multiple Kaps were displaced from NPCs, and the displacement of Kap122-GFP correlated with the observed passive permeability changes. 1,6HD thus temporarily permeates NPCs, and in line with Kap-centric models, the mechanism includes the release of numerous Kaps from the NPCs.


Assuntos
Carioferinas , Complexo de Proteínas Formadoras de Poros Nucleares , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citoesqueleto/metabolismo , Poro Nuclear/metabolismo
12.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37066338

RESUMO

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.

13.
Mol Cell Proteomics ; 9(3): 431-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955081

RESUMO

Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data.


Assuntos
Organelas/química , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Humanos , Organelas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo
14.
Cell Rep Methods ; 2(3): 100184, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475219

RESUMO

Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química
15.
Nat Cell Biol ; 24(11): 1584-1594, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302971

RESUMO

Biogenesis of nuclear pore complexes (NPCs) includes the formation of the permeability barrier composed of phenylalanine-glycine-rich nucleoporins (FG-Nups) that regulate the selective passage of biomolecules across the nuclear envelope. The FG-Nups are intrinsically disordered and prone to liquid-liquid phase separation and aggregation when isolated. How FG-Nups are protected from making inappropriate interactions during NPC biogenesis is not fully understood. Here we find that DNAJB6, a molecular chaperone of the heat shock protein network, forms foci in close proximity to NPCs. The number of these foci decreases upon removal of proteins involved in the early steps of interphase NPC biogenesis. Conversely, when this process is stalled in the last steps, the number of DNAJB6-containing foci increases and these foci are identified as herniations at the nuclear envelope. Immunoelectron tomography shows that DNAJB6 localizes inside the lumen of the herniations arising at NPC biogenesis intermediates. Loss of DNAJB6 results in the accumulation of cytosolic annulate lamellae, which are structures containing partly assembled NPCs, a feature associated with disturbances in NPC biogenesis. We find that DNAJB6 binds to FG-Nups and can prevent the aggregation of the FG region of several FG-Nups in cells and in vitro. Together, our data show that the molecular chaperone DNAJB6 provides quality control during NPC biogenesis and is involved in the surveillance of native intrinsically disordered FG-Nups.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Interfase
16.
Stem Cells ; 28(10): 1703-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20715181

RESUMO

Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1 KD ES cells. Summarizing, our data show that UTF1 is a key chromatin component in ES cells, preventing ES cell chromatin decondensation, and aberrant gene expression; both essential for proper initiation of lineage-specific differentiation of ES cells.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/genética , Transativadores/metabolismo , Animais , Southern Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Camundongos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Transativadores/genética
17.
FEBS J ; 287(6): 1058-1075, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912972

RESUMO

The nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry. Secondly, once assembled, some components of the NPC persist for an extremely long time and, as a result, are susceptible to accumulate damage. Lastly, a significant proportion of the NPC is composed of intrinsically disordered proteins that are prone to aggregation. In this review, we summarize how the quality of NPCs is guarded in young cells and discuss the current knowledge on the fate of NPCs during normal aging in different tissues and organisms. We discuss the extent to which current data supports a hypothesis that NPCs are poorly maintained during aging of nondividing cells, while in dividing cells the main challenge is related to the assembly of new NPCs. Our survey of current knowledge points toward NPC quality control as an important node in aging of both dividing and nondividing cells. Here, the loss of protein homeostasis during aging is central and the NPC appears to both be impacted by, and to drive, this process.


Assuntos
Envelhecimento , Poro Nuclear/metabolismo , Animais , Homeostase , Humanos
18.
Methods Mol Biol ; 2175: 169-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681490

RESUMO

Genetically encoded Förster resonance energy transfer (FRET)-based probes allow a sensitive readout for different or specific parameters in the living cell. We previously demonstrated how FRET-based probes could quantify macromolecular crowding with high spatio-temporal resolution and under various conditions. Here, we present a protocol developed for the use of FRET-based crowding probes in baker's yeast, but the general considerations also apply to other species, as well as other FRET-based sensors. This method allows straightforward detection of macromolecular crowding under challenging conditions often presented by living cells.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares/análise , Imagem Molecular/métodos , Proteínas Luminescentes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Aging Cell ; 19(2): e13084, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854076

RESUMO

To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age-dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high-throughput replica-pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age-specific mutation suppression gene. While wild-type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Senescência Celular/genética , Instabilidade Genômica/genética , Proteínas de Membrana/genética , Taxa de Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA/genética , Endonucleases Flap/genética , Ontologia Genética , Técnicas Genéticas , Mutagênese , Mutação , Acúmulo de Mutações , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Saccharomyces cerevisiae/fisiologia , Endonucleases Específicas para DNA e RNA de Cadeia Simples/genética
20.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990592

RESUMO

Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here, we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells, we observe drastic changes in organellar volume, leading to crowding on the micrometer scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.


Assuntos
Saccharomyces cerevisiae/fisiologia , Senescência Celular , Concentração de Íons de Hidrogênio , Organelas , Densidade Demográfica , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA