Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770917

RESUMO

Search for novel antimicrobial agents, including plant-derived flavonoids, and evaluation of the mechanisms of their antibacterial activities are pivotal objectives. The goal of this study was to compare the antihemolytic activity of flavonoids, quercetin, naringenin and catechin against sheep erythrocyte lysis induced by α-hemolysin (αHL) produced by the Staphylococcus aureus strain NCTC 5655. We also sought to investigate the membrane-modifying action of the flavonoids. Lipophilic quercetin, but not naringenin or catechin, effectively inhibited the hemolytic activity of αHL at concentrations (IC50 = 65 ± 5 µM) below minimal inhibitory concentration values for S. aureus growth. Quercetin increased the registered bacterial cell diameter, enhanced the fluidity of the inner and surface regions of bacterial cell membranes and raised the rigidity of the hydrophobic region and the fluidity of the surface region of erythrocyte membranes. Our findings provide evidence that the antibacterial activities of the flavonoids resulted from a disorder in the structural organization of bacterial cell membranes, and the antihemolytic effect of quercetin was related to the effect of the flavonoid on the organization of the erythrocyte membrane, which, in turn, increases the resistance of the target cells (erythrocytes) to αHL and inhibits αHL-induced osmotic hemolysis due to prevention of toxin incorporation into the target membrane. We confirmed that cell membrane disorder could be one of the direct modes of antibacterial action of the flavonoids.


Assuntos
Anti-Infecciosos , Catequina , Infecções Estafilocócicas , Animais , Ovinos , Flavonoides/química , Quercetina/farmacologia , Quercetina/metabolismo , Staphylococcus aureus , Catequina/química , Hemólise , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias , Infecções Estafilocócicas/metabolismo , Eritrócitos , Anti-Infecciosos/farmacologia
2.
Mol Cell Biochem ; 476(12): 4287-4299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34406575

RESUMO

Flavonoids, a large group of secondary plant phenolic metabolites, are important natural antioxidants and regulators of cellular redox balance. The present study addressed evaluation of the electronic properties of some flavonoids belonging to different classes such as quercetin (flavonols), catechin (flavanols), and naringenin (flavanones) and their interactions with oxidants in model systems of DPPH reduction, flavonoid autoxidation, and chlorination. According to our ab initio calculations, the high net negative excess charges of the C rings and the small positive excess charges of the B rings of quercetin, catechin, and naringenin make these parts of flavonoid molecules attractive for electrophilic attack. The 3'-OH group of the B ring of quercetin has the highest excess negative charge and the lowest energy of hydrogen atom abstraction for the flavonoids studied. The apparent reaction rate constants (s-1, 20 °C) and the activation energies (kJ/mol) of DPPH reduction were 0.34 ± 0.06 and 23.0 ± 2.5 in the case of quercetin, 0.09 ± 0.02 and 32.5 ± 2.5 in the case of catechin, respectively. The stoichiometry of the DPPH-flavonoid reaction was 1:1. The activation energies (kJ/mol) of quercetin and catechin autoxidations were 50.8 ± 6.1 and 58.1 ± 7.2, respectively. Naringenin was not oxidized by the DPPH radical and air oxygen (autoxidation) and the flavonoids studied effectively prevented HOCl-induced hemolysis due to direct scavenging of hypochlorous acid (flavonoid chlorination). The best antioxidant quercetin had the highest value of HOMO energy, a planar structure and optimal electron orbital delocalization on all the phenolic rings due to the C2=C3 double bond in the C ring (absent in catechin and naringenin).


Assuntos
Catequina/metabolismo , Eritrócitos/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Oxidantes/metabolismo , Quercetina/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Catequina/química , Flavanonas/química , Flavonoides/química , Sequestradores de Radicais Livres/química , Estrutura Molecular , Oxidantes/química , Oxirredução , Quercetina/química , Ratos
3.
Biochim Biophys Acta Biomembr ; 1862(11): 183442, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814117

RESUMO

In the present work, we investigated the interaction of flavonoids (quercetin, naringenin and catechin) with cellular and artificial membranes. The flavonoids considerably inhibited membrane lipid peroxidation in rat erythrocytes treated with tert-butyl hydroperoxide (700 µM), and the IC50 values for prevention of this process were equal to 9.7 ± 0.8 µM, 8.8 ± 0.7 µM, and 37.8 ± 4.4 µM in the case of quercetin, catechin and naringenin, respectively, and slightly decreased glutathione oxidation. In isolated rat liver mitochondria, quercetin, catechin and naringenin (10-50 µM) dose-dependently increased the sensitivity to Ca2+ ions - induced mitochondrial permeability transition. Using the probes TMA-DPH and DPH we showed that quercetin rather than catechin and naringenin strongly decreased the microfluidity of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomal membrane bilayer at different depths. On the contrary, using the probe Laurdan we observed that naringenin transfer the bilayer to a more ordered state, whereas quercetin dose-dependently decreased the order of lipid molecule packing and increased hydration in the region of polar head groups. The incorporation of the flavonoids, quercetin and naringenin and not catechin, into the liposomes induced an increase in the zeta potential of the membrane and enlarged the area of the bilayer as well as lowered the temperature and the enthalpy of the membrane phase transition. The effects of the flavonoids were connected with modification of membrane fluidity, packing, stability, electrokinetic properties, size and permeability, prevention of oxidative stress, which depended on the nature of the flavonoid molecule and the nature of the membrane.


Assuntos
Eritrócitos/química , Flavonoides/química , Mitocôndrias Hepáticas/química , Membranas Mitocondriais/química , Animais , Eritrócitos/metabolismo , Flavonoides/farmacologia , Lipossomos , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Permeabilidade , Ratos , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA