Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(32): 9931-9936, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101965

RESUMO

Lanthanide (Ln) elements Gd and Yb alloyed with a Pb monolayer on the Si(111) substrate form LnPb3 compounds having the same crystal structure. They comprise a single-atom-thick Pb layer arranged in a slightly distorted kagome lattice with Ln atoms filling the hexagonal voids. They have similar electronic band structures except for the Fermi level position, which varies between the divalent Yb- and trivalent Gd-containing compounds by ∼0.47 eV. The ability to create a 2D solid solution with the unified continuous Pb layer and hexagonal voids randomly filled with either Gd or Yb atoms allows precise control of the Fermi level position. Small alteration of the Fermi level triggers drastic changes in the Fermi surface topology due to the Lifshitz transition, hence in the physical properties. In particular, the sheet resistance of the GdxYb1-xPb3/Si(111) system can be controllably varied over an order of magnitude range.

2.
Nanoscale ; 14(39): 14732-14740, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36172823

RESUMO

We report on the successful synthesis of a 2D atomically thin heavy-fermion CePb3 kagome compound on a Si(111) surface. Growth and morphology were controlled and characterized through scanning tunneling microscopy observations revealing the high crystalline quality of the sample. Angle-resolved photoelectron spectroscopy measurements revealed the giant highly-anisotropic Rashba-like spin splitting of the surface states and semi-metallic character of the spectrum. According to the DFT calculations, the occupied hole and unoccupied electron states with huge spin-orbit splitting and out-of-plane spin polarization reside at the M̄ points near the Fermi level EF, which is ≈100 meV above the experimental one. The out-of-plane FM magnetization was found to be preferred with Ce spin and orbital magnetic momenta values of 0.895µB and -0.840µB, respectively. The spin-split states near EF are primarily formed by Pb pxy orbitals with the admixing of Ce d and f electrons due to the Ce f-d hybridization acquired asymmetry with respect to the sign of k∥. The observed electronic structure of the CePb3/Si(111)√3 × âˆš3 system is rather unique and in the hole-doped state, like in our experiment, can be enabled in the tunable spin current regime, which makes it a prospective 2D material for spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA