Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(11): 1319-1326, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077953

RESUMO

Injury is a key driver of inflammation, a critical yet necessary response involving several mediators that is aimed at restoring tissue homeostasis. Inflammation in the central nervous system can be triggered by a variety of stimuli, some intrinsic to the brain and others arising from peripheral signals. Fine-tuned regulation of this response is crucial in a system that is vulnerable due to, for example, aging and ongoing neurodegeneration. In this context, seemingly harmless interventions like a common surgery to repair a broken limb can overwhelm the immune system and become the driver of further complications such as delirium and other perioperative neurocognitive disorders. Here, we discuss potential mechanisms by which the immune system affects the central nervous system after surgical trauma. Together, these neuroimmune interactions are becoming hallmarks of and potential therapeutic targets for multiple neurologic conditions, including those affecting the perioperative space.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Complicações Pós-Operatórias , Alarminas/genética , Alarminas/metabolismo , Animais , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Barreira Hematoencefálica/metabolismo , Terapia Combinada , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Inflamação/diagnóstico , Inflamação/terapia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroimunomodulação , Resultado do Tratamento
2.
FASEB J ; 36(6): e22343, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35535564

RESUMO

Systemic perturbations can drive a neuroimmune cascade after surgical trauma, including affecting the blood-brain barrier (BBB), activating microglia, and contributing to cognitive deficits such as delirium. Delirium superimposed on dementia (DSD) is a particularly debilitating complication that renders the brain further vulnerable to neuroinflammation and neurodegeneration, albeit these molecular mechanisms remain poorly understood. Here, we have used an orthopedic model of tibial fracture/fixation in APPSwDI/mNos2-/- AD (CVN-AD) mice to investigate relevant pathogenetic mechanisms underlying DSD. We conducted the present study in 6-month-old CVN-AD mice, an age at which we speculated amyloid-ß pathology had not saturated BBB and neuroimmune functioning. We found that URMC-099, our brain-penetrant anti-inflammatory neuroprotective drug, prevented inflammatory endothelial activation, breakdown of the BBB, synapse loss, and microglial activation in our DSD model. Taken together, our data link post-surgical endothelial activation, microglial MafB immunoreactivity, and synapse loss as key substrates for DSD, all of which can be prevented by URMC-099.


Assuntos
Delírio , Demência , Animais , Delírio/complicações , Delírio/prevenção & controle , Demência/etiologia , Demência/prevenção & controle , Hipocampo/metabolismo , Camundongos , Piridinas , Pirróis/uso terapêutico
3.
Br J Anaesth ; 130(2): e370-e380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778276

RESUMO

BACKGROUND: Peripheral surgical trauma can trigger neuroinflammation and ensuing neurological complications, such as delirium. The mechanisms whereby surgery contributes to postoperative neuroinflammation remain unclear and without effective therapies. Here, we developed a microfluidic-assisted blood-brain barrier (BBB) device and tested the effects of omega-3 fatty acids on neuroimmune interactions after orthopaedic surgery. METHODS: A microfluidic-assisted BBB device was established using primary human cells. Tight junction proteins, vascular cell adhesion molecule 1 (VCAM-1), BBB permeability, and astrocytic networks were assessed after stimulation with interleukin (IL)-1ß and in the presence or absence of a clinically available omega-3 fatty acid emulsion (Omegaven®; Fresenius Kabi, Bad Homburg, Germany). Mice were treated 1 h before orthopaedic surgery with 10 µl g-1 body weight of omega-3 fatty acid emulsion i.v. or equal volumes of saline. Changes in pericytes, perivascular macrophages, BBB opening, microglial activation, and inattention were evaluated. RESULTS: Omega-3 fatty acids protected barrier permeability, endothelial tight junctions, and VCAM-1 after exposure to IL-1ß in the BBB model. In vivo studies confirmed that omega-3 fatty acid treatment inhibited surgery-induced BBB impairment, microglial activation, and delirium-like behaviour. We identified a novel role for pericyte loss and perivascular macrophage activation in mice after surgery, which were rescued by prophylaxis with i.v. omega-3 fatty acids. CONCLUSIONS: We present a new approach to study neuroimmune interactions relevant to perioperative recovery using a microphysiological BBB platform. Changes in barrier function, including dysregulation of pericytes and perivascular macrophages, provide new targets to reduce postoperative delirium.


Assuntos
Delírio do Despertar , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Doenças Neuroinflamatórias , Emulsões/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo
4.
Alzheimers Dement ; 16(5): 734-749, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32291962

RESUMO

OBJECTIVE: The present work evaluates the relationship between postoperative immune and neurovascular changes and the pathogenesis of surgery-induced delirium superimposed on dementia. BACKGROUND AND RATIONALE: Postoperative delirium is a common complication in many older adults and in patients with dementia including Alzheimer's disease (AD). The course of delirium can be particularly debilitating, while its pathophysiology remains poorly defined. HISTORICAL EVOLUTION: As of 2019, an estimated 5.8 million people of all ages have been diagnosed with AD, 97% of whom are >65 years of age. Each year, many of these patients require surgery. However, anesthesia and surgery can increase the risk for further cognitive decline. Surgery triggers neuroinflammation both in animal models and in humans, and a failure to resolve this inflammatory state may contribute to perioperative neurocognitive disorders as well as neurodegenerative pathology. UPDATED HYPOTHESIS: We propose an immunovascular hypothesis whereby dysregulated innate immunity negatively affects the blood-brain interface, which triggers delirium and thereby exacerbates AD neuropathology. EARLY EXPERIMENTAL DATA: We have developed a translational model to study delirium superimposed on dementia in APPSwDI/mNos2-/- AD mice (CVN-AD) after orthopedic surgery. At 12 months of age, CVN-AD showed distinct neuroimmune and vascular impairments after surgery, including acute microgliosis and amyloid-ß deposition. These changes correlated with attention deficits, a core feature of delirium-like behavior. FUTURE EXPERIMENTS AND VALIDATION STUDIES: Future research should determine the extent to which prevention of surgery-induced microgliosis and/or neurovascular unit dysfunction can prevent or ameliorate postoperative memory and attention deficits in animal models. Translational human studies should evaluate perioperative indices of innate immunity and neurovascular integrity and assess their potential link to perioperative neurocognitive disorders. MAJOR CHALLENGES FOR THE HYPOTHESIS: Understanding the complex relationships between delirium and dementia will require mechanistic studies aimed at evaluating the role of postoperative neuroinflammation and blood-brain barrier changes in the setting of pre-existing neurodegenerative and/or aging-related pathology. LINKAGE TO OTHER MAJOR THEORIES: Non-resolving inflammation with vascular disease that leads to cognitive impairments and dementia is increasingly important in risk stratification for AD in the aging population. The interdependence of these factors with surgery-induced neuroinflammation and cognitive dysfunction is also becoming apparent, providing a strong platform for assessing the relationship between postoperative delirium and longer term cognitive dysfunction in older adults.


Assuntos
Delírio/fisiopatologia , Demência/complicações , Inflamação , Complicações Pós-Operatórias , Animais , Barreira Hematoencefálica , Encéfalo/patologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Humanos , Camundongos , Transtornos Neurocognitivos
5.
Cell Mol Neurobiol ; 39(8): 1187-1200, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31332667

RESUMO

Hemozoin produced by Plasmodium falciparum during malaria infection has been linked to the neurological dysfunction in cerebral malaria. In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1ß, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1ß, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS- and caspase-6-mediated neurotoxicity. These results have thrown more light on the actions of malarial hemozoin in the neurobiology of cerebral malaria.


Assuntos
Hemeproteínas/toxicidade , Inflamação/patologia , Síndromes Neurotóxicas/patologia , Animais , Caspase 1/metabolismo , Caspase 6/metabolismo , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , DNA/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Nitritos/metabolismo , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfonas/farmacologia , Fator de Transcrição RelA/metabolismo
6.
Phytother Res ; 32(10): 1957-1966, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29786910

RESUMO

Agathisflavone is a bioactive compound in Anacardium occidentale. In this study, we investigated inhibition neuroinflammation in BV2 microglia by agathisflavone. Neuroprotective activity of the compound was investigated in differentiated SH-SY5Y cells. Experiments in lipopolysaccharide (LPS)-activated BV2 microglia showed that pretreatment with agathisflavone (5-20 µM) produced significant reduction in the release of tumour necrosis factor-α, interleukin-6, interleukin-1ß, NO, and PGE2 from the cells. Immunoblotting experiments also revealed that agathisflavone reduced levels of iNOS and COX-2 protein. Further studies revealed that agathisflavone reduced neuroinflammation by targeting critical steps in NF-κB signalling in BV2 microglia. Treatment of SH-SY5Y cells with conditioned medium from LPS-activated BV2 microglia produced a significant reduction in neuronal viability. However, conditioned medium from BV2 cells that were stimulated with LPS in the presence of agathisflavone did not induce neurotoxicity. Agathisflavone also produced neuroprotection in APPSwe plasmid-transfected SH-SY5Y neurons. The compound further attenuated LPS-induced and APPSwe plasmid-induced reduction in SIRT1 in BV2 microglia and SH-SY5Y, respectively. In the presence of EX527, agathisflavone lost its anti-inflammatory and neuroprotective activities. Our results suggest that agathisflavone inhibits neuroinflammation in BV2 microglia by targeting NF-κB signalling pathway. The compound also reduces neurotoxicity through mechanisms that are possibly linked to SIRT1 in the microglia and neurons.


Assuntos
Anacardium/química , Anti-Inflamatórios/farmacologia , Biflavonoides/farmacologia , Inflamação/metabolismo , Microglia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Mol Cell Biochem ; 435(1-2): 149-162, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28551846

RESUMO

Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5' AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2',7'-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40phox, gp91phox, AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD+/NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40phox and gp91phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD+. Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD+/SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzoquinonas/farmacologia , Microglia/enzimologia , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Mol Cell Biochem ; 414(1-2): 23-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26838169

RESUMO

Kolaviron is a mixture of biflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-κB and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assays and reporter assays. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the pro-inflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IκB/NF-κB signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/antioxidant response element pathway. RNAi experiments revealed that Nrf2 is needed for the anti-inflammatory effects of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders.


Assuntos
Flavonoides/farmacologia , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inativação Gênica , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
9.
Eur J Nutr ; 55(4): 1653-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26155780

RESUMO

PURPOSE: Pomegranate fruit, Punica granatum L. (Punicaceae), and its constituents have been shown to inhibit inflammation. In this study, we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1ß-stimulated SK-N-SH cells. METHODS: An enzyme immunoassay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1ß-stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB, and phospho-IKK proteins was evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aß in SK-N-SH cells stimulated with IL-1ß were measured with an in cell ELISA. RESULTS: PWE (25-200 µg/ml) dose dependently reduced COX-2-dependent PGE2 production in SK-N-SH cells stimulated with IL-1ß. Phosphorylation of IκB and IKK was significantly (p < 0.001) inhibited by PWE (50-200 µg/ml). Our studies also show that PWE (50-200 µg/ml) significantly (p < 0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore, PWE inhibited BACE-1 and Aß expression in SK-N-SH cells treated with IL-1ß. CONCLUSIONS: Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1ß-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders such as Alzheimer's disease.


Assuntos
Amiloide/metabolismo , Inflamação/metabolismo , Lythraceae/química , Neurônios/efeitos dos fármacos , Preparações de Plantas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , Liofilização , Frutas/química , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/citologia , Fosforilação , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Biochim Biophys Acta ; 1840(12): 3311-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152356

RESUMO

BACKGROUND: Tiliroside is a dietary glycosidic flavonoid which has shown in vivo anti-inflammatory activity. This study is aimed at evaluating the effect of tiliroside on neuroinflammation in BV2 microglia, and to identify its molecular targets of anti-neuroinflammatory action. METHODS: BV2 cells were stimulated with LPS+IFNγ in the presence or absence of tiliroside. TNFα, IL-6, nitrite and PGE2 production was determined with ELISA, Griess assay and enzyme immunoassay, respectively. iNOS, COX-2, phospho-p65, phospho-IκBα, phospho-IKKα, phospho-p38, phospho-MK2, phosopho-MKK3/6 and TRAF-6 were determined by western blot analysis. NF-κB activity was also investigated using a reporter gene assay in HEK293 cells. LPS-induced microglia ROS production was tested using the DCFDA method, while HO-1 and Nrf2 activation was determined with western blot. RESULTS: Tiliroside significantly suppressed TNFα, IL-6, nitrite and PGE2 production, as well as iNOS and COX-2 protein expression from LPS+IFNγ-activated BV2 microglia. Further mechanistic studies showed that tiliroside inhibited neuroinflammation by targeting important steps in the NF-κB and p38 signalling in LPS+IFNγ-activated BV2 cells. This compound also inhibited LPS-induced TRAF-6 protein expression in BV2 cells. Antioxidant activity of tiliroside in BV2 cells was demonstrated through attenuation of LPS+IFNγ-induced ROS production and activation of HO-1/Nrf2 antioxidant system. CONCLUSIONS: Tiliroside inhibits neuroinflammation in BV2 microglia through a mechanism involving TRAF-6-mediated activation of NF-κB and p38 MAPK signalling pathways. These activities are possibly due, in part, to the antioxidant property of this compound. GENERAL SIGNIFICANCE: Tiliroside is a potential novel natural compound for inhibiting neuroinflammation in neurodegenerative disorders.

11.
Cureus ; 15(6): e40725, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350982

RESUMO

The classical view of the renin-angiotensin system (RAS) is that of the circulating hormone pathway involved in salt and water homeostasis and blood pressure regulation. It is also involved in the pathogenesis of cardiac and renal disorders. This led to the creation of drugs blocking the actions of this classical pathway, which improved cardiac and renal outcomes. Our understanding of the RAS has significantly expanded with the discovery of new peptides involved in this complex pathway. Over the last two decades, a counter-regulatory or protective pathway has been discovered that opposes the effects of the classical pathway. Components of RAS are also implicated in the pathogenesis of obesity and its metabolic diseases. The continued discovery of newer molecules also provides novel therapeutic targets to improve disease outcomes. This article aims to provide an overview of an updated understanding of the RAS, its role in physiological and pathological processes, and potential novel therapeutic options from RAS for managing cardiorenal disorders, obesity, and related metabolic disorders.

12.
Free Radic Biol Med ; 200: 47-58, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870375

RESUMO

Strong evidence indicates critical roles of NADPH oxidase (a key superoxide-producing enzyme complex during inflammation) in activated microglia for mediating neuroinflammation and neurodegeneration. However, little is known about roles of neuronal NADPH oxidase in neurodegenerative diseases. This study aimed to investigate expression patterns, regulatory mechanisms and pathological roles of neuronal NADPH oxidase in inflammation-associated neurodegeneration. The results showed persistent upregulation of NOX2 (gp91phox; the catalytic subunit of NADPH oxidase) in both microglia and neurons in a chronic mouse model of Parkinson's disease (PD) with intraperitoneal LPS injection and LPS-treated midbrain neuron-glia cultures (a cellular model of PD). Notably, NOX2 was found for the first time to exhibit a progressive and persistent upregulation in neurons during chronic neuroinflammation. While primary neurons and N27 neuronal cells displayed basal expression of NOX1, NOX2 and NOX4, significant upregulation only occurred in NOX2 but not NOX1 or NOX4 under inflammatory conditions. Persistent NOX2 upregulation was associated with functional outcomes of oxidative stress including increased ROS production and lipid peroxidation. Neuronal NOX2 activation displayed membrane translocation of cytosolic p47phox subunit and was inhibited by apocynin and diphenyleneiodonium chloride (two widely-used NADPH oxidase inhibitors). Importantly, neuronal ROS production, mitochondrial dysfunction and degeneration induced by inflammatory mediators in microglia-derived conditional medium were blocked by pharmacological inhibition of neuronal NOX2. Furthermore, specific deletion of neuronal NOX2 prevented LPS-elicited dopaminergic neurodegeneration in neuron-microglia co-cultures separately grown in the transwell system. The attenuation of inflammation-elicited upregulation of NOX2 in neuron-enriched and neuron-glia cultures by ROS scavenger N-acetylcysteine indicated a positive feedback mechanism between excessive ROS production and NOX2 upregulation. Collectively, our findings uncovered crucial contribution of neuronal NOX2 upregulation and activation to chronic neuroinflammation and inflammation-related neurodegeneration. This study reinforced the importance of developing NADPH oxidase-targeting therapeutics for neurodegenerative diseases.


Assuntos
Doenças Neuroinflamatórias , Doença de Parkinson , Animais , Camundongos , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NADPH Oxidases/metabolismo , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Front Immunol ; 13: 856254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603196

RESUMO

Neuroinflammation is a growing hallmark of perioperative neurocognitive disorders (PNDs), including delirium and longer-lasting cognitive deficits. We have developed a clinically relevant orthopedic mouse model to study the impact of a common surgical procedure on the vulnerable brain. The mechanism underlying PNDs remains unknown. Here we evaluated the impact of surgical trauma on the NLRP3 inflammasome signaling, including the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and IL-1ß in the hippocampus of C57BL6/J male mice, adult (3-months) and aged (>18-months). Surgery triggered ASC specks formation in CA1 hippocampal microglia, but without inducing significant morphological changes in NLRP3 and ASC knockout mice. Since no therapies are currently available to treat PNDs, we assessed the neuroprotective effects of a biomimetic peptide derived from the endogenous inflammation-ending molecule, Annexin-A1 (ANXA1). We found that this peptide (ANXA1sp) inhibited postoperative NLRP3 inflammasome activation and prevented microglial activation in the hippocampus, reducing PND-like memory deficits. Together our results reveal a previously under-recognized role of hippocampal ANXA1 and NLRP3 inflammasome dysregulation in triggering postoperative neuroinflammation, offering a new target for advancing treatment of PNDs through the resolution of inflammation.


Assuntos
Anexina A1 , Inflamassomos , Animais , Inflamassomos/metabolismo , Inflamação , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias
14.
Int Immunopharmacol ; 77: 105951, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31634788

RESUMO

Neuroinflammation is now widely accepted as an important pathophysiological mechanism in neurodegenerative disorders, thus providing a critical target for novel compounds. In this study, 3-O-[(E)-(2-oxo-4-(p-tolyl)but-3-en-1-yl] kaempferol (OTBK) prevented the production of pro-inflammatory mediators TNFα, IL-6, PGE2 and nitrite from BV-2 microglia activated with LPS and IFNγ. These effects were accompanied by reduction in the levels of pro-inflammatory proteins COX-2 and iNOS. Involvement of NF-κB in the anti-inflammatory activity of OTBK was evaluated in experiments showing that the compound prevented phosphorylation, nuclear accumulation and DNA binding of p65 sub-unit induced by stimulation of BV-2 microglia with LPS and IFNγ. Exposure of mouse hippocampal HT22 neurons to conditioned media from LPS + IFNγ-stimulated BV-2 cells resulted in reduced cell viability and generation of cellular reactive oxygen species. Interestingly, conditioned media from LPS/IFNγ-stimulated BV-2 cells which were treated with OTBK did not induce neuronal damage or oxidative stress. OTBK was shown to increase protein levels of phospho-AMPKα, Nrf2 and HO-1 in BV-2 microglia. It was further revealed that OTBK treatment increased Nrf2 DNA binding in BV-2 microglia. The actions of the compound on AMPKα and Nrf2 were shown to contribute to its anti-inflammatory activity as demonstrated by diminished activity in the presence of the AMPK antagonist dorsomorphin and Nrf2 inhibitor trigonelline. These results suggest that OTBK inhibits neuroinflammation through mechanisms that may involve activation of AMPKα and Nrf2 in BV-2 microglia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Heme Oxigenase-1/metabolismo , Quempferóis/farmacologia , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Front Immunol ; 10: 2675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31911786

RESUMO

Postoperative delirium is a frequent and debilitating complication, especially amongst high risk procedures such as orthopedic surgery, and its pathogenesis remains unclear. Inattention is often reported in the clinical diagnosis of delirium, however limited attempts have been made to study this cognitive domain in preclinical models. Here we implemented the 5-choice serial reaction time task (5-CSRTT) to evaluate attention in a clinically relevant mouse model following orthopedic surgery. The 5-CSRTT showed a time-dependent impairment in the number of responses made by the mice acutely after orthopedic surgery, with maximum impairment at 24 h and returning to pre-surgical performance by day 5. Similarly, the latency to the response was also delayed during this time period but returned to pre-surgical levels within several days. While correct responses decreased following surgery, the accuracy of the response (e.g., selection of the correct nose-poke) remained relatively unchanged. In a separate cohort we evaluated neuroinflammation and blood-brain barrier (BBB) dysfunction using clarified brain tissue with light-sheet microscopy. CLARITY revealed significant changes in microglial morphology and impaired astrocytic-tight junction interactions using high-resolution 3D reconstructions of the neurovascular unit. Deposition of IgG, fibrinogen, and autophagy markers (TFEB and LAMP1) were also altered in the hippocampus 24 h after surgery. Together, these results provide translational evidence for the role of peripheral surgery contributing to delirium-like behavior and disrupted neuroimmunity in adult mice.


Assuntos
Disfunção Cognitiva/etiologia , Delírio/etiologia , Procedimentos Ortopédicos/efeitos adversos , Fraturas da Tíbia/cirurgia , Animais , Atenção , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Delírio/imunologia , Delírio/metabolismo , Delírio/patologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/metabolismo , Encefalite/patologia , Fibrinogênio/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Imunoglobulina G/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Tempo de Reação
16.
Mol Nutr Food Res ; 63(10): e1801237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811877

RESUMO

SCOPE: Urolithin A is an anti-inflammatory and neuroprotective gut-derived metabolite from ellagitannins and ellagic acid in pomegranate, berries, and nuts. The roles of SIRT-1 and autophagy in the neuroprotective activity of urolithin A are investigated. METHODS AND RESULTS: Analyses of culture supernatants from lipopolysaccharide-stimulated BV2 microglia show that urolithin A (2.5-10 µm) produced significant reduction in the production of nitrite, tumor necrosis factor (TNF)-α and IL-6. The anti-inflammatory effect of the compound is reversed in the presence of sirtuin (SIRT)-1 and the autophagy inhibitors EX527 and chloroquine, respectively. Protein analyses reveal reduction in p65 and acetyl-p65 protein. Treatment of BV2 microglia with urolithin A results in increased SIRT-1 activity and nuclear protein, while induction of autophagy by the compound is demonstrated using autophagy fluorescent and autophagy LC3 HiBiT reporter assays. Viability assays reveal that urolithin A produces a neuroprotective effect in APPSwe-transfected ReNcell VM human neural cells, which is reversed in the presence of EX527 and chloroquine. Increase in both SIRT-1 and autophagic activities are also detected in these cells following treatment with urolithin A. CONCLUSIONS: It has been proposed that SIRT-1 activation and induction of autophagy are involved in the neuroprotective activity of urolithin A in brain cells.


Assuntos
Autofagia/efeitos dos fármacos , Cumarínicos/farmacologia , Microglia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetilação/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Lythraceae/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Células-Tronco Neurais/metabolismo , Sirtuína 1/metabolismo
17.
Mol Neurobiol ; 55(10): 8103-8123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29508282

RESUMO

Hyperactivated microglia plays a key role in regulating neuroinflammatory responses which cause damage to neurons. In recent years, substantial attention has been paid in identifying new strategies to abrogate neuroinflammation. Tiliroside, a natural dietary glycosidic flavonoid, is known to inhibit neuroinflammation. This study was aimed at investigating the molecular mechanisms involved in the inhibition of neuroinflammation and neurotoxicity by tiliroside. The effects of tiliroside on Nrf2 and SIRT1 activities in BV2 microglia and HT22 hippocampal neurons were investigated using immunoblotting and DNA binding assays. The roles of Nrf2 and SIRT1 in the anti-inflammatory activity of tiliroside were further investigated using RNA interference experiments. HT22 neuronal viability was determined by XTT, calcium influx, DNA fragmentation assays. The effect of tiliroside on MAP2 protein expression in HT22 neurons was investigated using western blotting and immunofluorescence. We also studied the impact of tiliroside on DNA fragmentation and ROS generation in APPSwe-transfected 3D neuronal stem cells. Results show that tiliroside increased protein levels of Nrf2, HO-1 and NQO1, indicating an activation of the Nrf2 protective mechanisms in the microglia. Furthermore, transfection of BV2 cells with Nrf2 siRNA resulted in the loss of anti-inflammatory activity by tiliroside. Tiliroside reduced protein levels of acetylated-NF-κB-p65, and increased SIRT1 in LPS/IFNγ-activated BV2 microglia. RNAi experiments revealed that inhibition of neuroinflammation by tiliroside was not affected by silencing SIRT1 gene. Results of neurotoxicity experiments revealed that neuroinflammation-induced toxicity, DNA fragmentation, ROS generation and calcium accumulation in HT22 neurons were significantly reduced by tiliroside treatment. In addition, the compound also protected differentiated human neural progenitor cells by blocking ROS generation and DNA fragmentation. Overall, this study has established that tiliroside protected BV2 microglia from LPS/IFNγ-induced neuroinflammation and HT22 neuronal toxicity by targeting Nrf2 antioxidant mechanisms. The compound also produced inhibition of NF-κB acetylation through activation of SIRT1, as well as increasing SIRT1 activity in mouse hippocampal neurons. Results from this study have further established the mechanisms involved in the anti-neuroinflammatory and neuroprotective activities of tiliroside.


Assuntos
Dieta , Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Neuroproteção/efeitos dos fármacos , Transdução de Sinais , Acetilação , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Elementos de Resposta Antioxidante/genética , Antioxidantes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/patologia , Interferon gama/metabolismo , Lipopolissacarídeos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Int Immunopharmacol ; 48: 17-29, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28458100

RESUMO

Thymoquinone is an antioxidant phytochemical that has been shown to inhibit neuroinflammation. However, little is known about the potential roles of intracellular antioxidant signalling pathways in its anti-inflammatory activity. The objective of this study was to elucidate the roles played by activation of the Nrf2/ARE antioxidant mechanisms in the anti-inflammatory activity of this compound. Thymoquinone inhibited lipopolysaccharide (LPS)-induced neuroinflammation through interference with NF-κB signalling in BV2 microglia. Thymoquinone also activated Nrf2/ARE signalling by increasing nuclear localisation, DNA binding and transcriptional activity of Nrf2, as well as increasing protein levels of HO-1 and NQO1. Suppression of Nrf2 activity through siRNA or with the use of trigonelline resulted in the loss of anti-inflammatory activity by thymoquinone. Taken together, our studies show that thymoquinone inhibits NF-κB-dependent neuroinflammation in BV2 microglia, by targeting antioxidant pathway involving activation of both Nrf2/ARE. We propose that activation of Nrf2/ARE signalling pathway by thymoquinone probably results in inhibition of NF-κB-mediated neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoquinonas/farmacologia , Microglia/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
19.
Mol Neurobiol ; 53(9): 6426-6443, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26607631

RESUMO

Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40 µM) for 24 h. ELISAs and western blotting were used to detect pro-inflammatory cytokines, nitric oxide, prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity and Aß levels were measured with ELISA kits. Protein levels of targets in nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling, as well as heme oxygenase-1 (HO-1), NQO1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) were also measured with western blot. NF-κB binding to the DNA was investigated using electrophoretic mobility shift assays (EMSA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNA fragmentation and reactive oxygen species (ROS) assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, tumour necrosis factor-alpha (TNFα) and interleukin (IL)-6); Aß and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-κB and p38 MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and neuroprotective activities of artemether. We conclude that artemether induces Nrf2 expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether in BV2 microglia. Our results suggest that this drug has a therapeutic potential in neurodegenerative disorders.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Inflamação/tratamento farmacológico , Microglia/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antioxidantes/metabolismo , Artemeter , Artemisininas/química , Artemisininas/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/patologia , Interleucina-6/biossíntese , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/toxicidade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Prostaglandina-E Sintases/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Mol Nutr Food Res ; 58(9): 1843-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25066095

RESUMO

SCOPE: In this study, the effects of punicalagin on neuroinflammation in LPS-activated microglia were investigated. METHODS AND RESULTS: The ability of punicalagin to reduce the production of TNF-α, IL-6 and prostaglandin E2 was measured in culture medium using enzyme immunoassay. TNF-α and IL-6 gene expression in mouse hippocampal slices was measured with PCR. cyclooxygenase-2 and microsomal prostaglandin E synthase 1 protein and mRNA were evaluated with Western blotting and PCR, respectively. Further experiments to investigate effects of punicalagin on protein expressions of inflammatory targets were also determined with Western blotting. Pretreatment of rat primary microglia with punicalagin (5-40 µM) prior to LPS (10 ng/mL) stimulation produced a significant (p < 0.05) inhibition of TNF-α, IL-6 and prostaglandin E2 production. Punicalagin completely abolished TNF-α and IL-6 gene expression in LPS-stimulated hippocampal slices. Protein and mRNA expressions of cyclooxygenase-2 and microsomal prostaglandin E synthase 1 were also reduced by punicalagin pretreatment. Results show that punicalagin interferes with NF-κB signalling through attenuation of NF-κB-driven luciferase expression, as well as inhibition of IκB phosphorylation and nuclear translocation of p65 subunit in the microglia. CONCLUSION: These results suggest that punicalagin inhibits neuroinflammation in LPS-activated microglia through interference with NF-κB signalling, suggesting its potential as a nutritional preventive strategy in neurodegenerative disorders.


Assuntos
Taninos Hidrolisáveis/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Hipocampo/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Técnicas de Cultura de Órgãos , Prostaglandina-E Sintases , Prostaglandina-Endoperóxido Sintases/genética , Ratos Sprague-Dawley , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA