Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 22(23): 27942-57, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402035

RESUMO

We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.


Assuntos
Óptica e Fotônica/instrumentação , Teoria Quântica , Desenho de Equipamento , Fótons
2.
Opt Lett ; 39(4): 914-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562240

RESUMO

We demonstrate highly efficient photon-pair generation using an 8 mm long hydrogenated amorphous silicon (a-Si:H) waveguide in far-detuned multiple wavelength channels simultaneously, measuring a coincidence-to-accidental ratio as high as 400. We also characterize the contamination from Raman scattering and show it to be insignificant over a spectrum span of at least 5 THz. Our results highlight a-Si:H as a potential high-performance, CMOS-compatible platform for large-scale quantum applications, particularly those based on the use of multiplexed quantum signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA