Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621185

RESUMO

Profiled membranes (also known as corrugated membranes, micro-structured membranes, patterned membranes, membranes with designed topography or notched membranes) are gaining increasing academic and industrial attention and recognition as a viable alternative to flat membranes. So far, profiled ion exchange membranes have shown to significantly improve the performance of reverse electrodialysis (RED), and particularly, electrodialysis (ED) by eliminating the spacer shadow effect and by inducing hydrodynamic changes, leading to ion transport rate enhancement. The beneficial effects of profiled ion exchange membranes are strongly dependent on the shape of their profiles (corrugations/patterns) as well as on the flow rate and salts' concentration in the feed streams. The enormous degree of freedom to create new profile geometries offers an exciting opportunity to improve even more their performance. Additionally, the advent of new manufacturing methods in the membrane field, such as 3D printing, is anticipated to allow a faster and an easier way to create profiled membranes with different and complex geometries.


Assuntos
Membranas Artificiais , Diálise/métodos , Difusão , Divórcio , Impedância Elétrica , Filtração/métodos , Hidrodinâmica , Troca Iônica , Impressão Tridimensional , Salinidade
2.
J Environ Manage ; 181: 762-769, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27444721

RESUMO

Experiments for treating two different types of hazardous oil refinery effluents were performed in order to avoid/minimize their adverse impacts on the environment. First, refinery wastewater was subjected to ultrafiltration using a ceramic membrane, treatment, which did not provide an adequate reduction of the polar oil and grease content below the maximal contaminant level allowed. Therefore the option of reducing the polar oil and grease contamination at its main emission source point in the refinery - the spent caustic originating from the refinery kerosene caustic washing unit - using an alkaline-resistant nanofiltration polymeric membrane treatment was tested. It was found that at a constant operating pressure and temperature, 99.9% of the oil and grease and 97.7% of the COD content were rejected at this emission point. Moreover, no noticeable membrane fouling or permeate flux decrease were registered until a spent caustic volume concentration factor of 3. These results allow for a reuse of the purified permeate in the refinery operations, instead of a fresh caustic solution, which besides the improved safety and environmentally related benefits, can result in significant savings of 1.5 M€ per year at the current prices for the biggest Portuguese oil refinery. The capital investment needed for nanofiltration treatment of the spent caustic is estimated to be less than 10% of that associated with the conventional wet air oxidation treatment of the spent caustic that is greater than 9 M€. The payback period was estimated to be 1.1 years. The operating costs for the two treatment options are similar, but the reuse of the nanofiltration spent caustic concentrate for refinery pH control applications can further reduce the operating expenditures. Overall, the pilot plant results obtained and the process economics evaluation data indicate a safer, environmentally friendly and highly competitive solution offered by the proposed nanofiltration treatment, thus representing a promising alternative to the use of conventional spent caustic treatment units.


Assuntos
Conservação dos Recursos Naturais/métodos , Resíduos Industriais , Membranas Artificiais , Indústria de Petróleo e Gás , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise , Projetos Piloto , Polímeros , Águas Residuárias/análise
3.
Membranes (Basel) ; 13(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37623787

RESUMO

Competition for the migration of interfering cations limits the scale-up and implementation of the Donnan dialysis process for the recovery of ammonia nitrogen (NH4+-N) from wastewater in practice. Highly efficient selective permeation of NH4+ through a cation exchange membrane (CEM) is expected to be modulated via tuning the surface charge and structure of CEM. In this work, a novel CEM was designed to form a graphene oxide (GO)-polyethyleneimine (PEI) cross-linked layer by introducing self-assembling layers of GO and PEI on the surface of a commercial CEM, which rationally regulates the surface charge and structure of the membrane. The resulting positively charged membrane surface exhibits stronger repulsion for divalent cations compared to monovalent cations according to Coulomb's law, while, simultaneously, GO forms π-metal cation conjugates between metal cations (e.g., Mg2+ and Ca2+), thus limiting metal cation transport across the membrane. During the DD process, higher NH4+ concentrations resulted in a longer time to reach Donnan equilibrium and higher NH4+ flux, while increased Mg2+ concentrations resulted in lower NH4+ flux (from 0.414 to 0.213 mol·m-2·h-1). Using the synergistic effect of electrostatic interaction and non-covalent cross-linking, the designed membrane, referred to as GO-PEI (20) and prepared by a 20 min impregnation in the GO-PEI mixture, exhibited an NH4+ transport rate of 0.429 mol·m-2·h-1 and a Mg2+ transport rate of 0.003 mol·m-2·h-1 in single-salt solution tests and an NH4+/Mg2+ selectivity of 15.46, outperforming those of the unmodified and PEI membranes (1.30 and 5.74, respectively). In mixed salt solution tests, the GO-PEI (20) membrane showed a selectivity of 15.46 (~1.36, the unmodified membrane) for NH4+/Mg2+ and a good structural stability after 72 h of continuous operation. Therefore, this facile surface charge modulation approach provides a promising avenue for achieving efficient NH4+-selective separation by modified CEMs.

4.
Membranes (Basel) ; 13(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755199

RESUMO

In this review, the state of the art of modified membranes developed and applied for the improved performance of redox flow batteries (RFBs) is presented and critically discussed. The review begins with an introduction to the energy-storing chemical principles and the potential of using RFBs in the energy transition in industrial and transport-related sectors. Commonly used membrane modification techniques are briefly presented and compared next. The recent progress in applying modified membranes in different RFB chemistries is then critically discussed. The relationship between a given membrane modification strategy, corresponding ex situ properties and their impact on battery performance are outlined. It has been demonstrated that further dedicated studies are necessary in order to develop an optimal modification technique, since a modification generally reduces the crossover of redox-active species but, at the same time, leads to an increase in membrane electrical resistance. The feasibility of using alternative advanced modification methods, similar to those employed in water purification applications, needs yet to be evaluated. Additionally, the long-term stability and durability of the modified membranes during cycling in RFBs still must be investigated. The remaining challenges and potential solutions, as well as promising future perspectives, are finally highlighted.

5.
Membranes (Basel) ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623793

RESUMO

This Special Issue of the journal Membranes arises from the need to highlight the developments in the field of membrane research and membrane processes that have been emerging in recent years by researchers and research groups based in the Iberian Peninsula [...].

6.
Membranes (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984733

RESUMO

For the production of polyhydroxyalkanoates (PHA) using nitrogen-rich feedstocks (e.g., protein-rich resources), the typical strategy of restricting cell growth as a means to enhance overall PHA productivity by nitrogen limitation is not applicable. In this case, a possible alternative to remove the nitrogen excess (NH4+/NH3) is by applying membrane separation processes. In the present study, the use of Donnan dialysis to separate ammonium ions from volatile fatty acids present in the media for the production of PHA was evaluated. Synthetic and real feed solutions were used, applying NaCl and HCl receiver solutions separated by commercial cation-exchange membranes. For this specific purpose, Fumasep and Ralex membranes showed better performance than Ionsep. Sorption of ammonium ions occurred in the Ralex membrane, thus intensifying the ammonium extraction. The separation performances with NaCl and HCl as receiver solutions were similar, despite sorption occurring in the Ralex membrane more intensely in the presence of NaCl. Higher volumetric flow rates, NaCl receiver concentrations, and volume ratios of feed:receiver solutions enhanced the degree of ammonium recovery. The application of an external electric potential difference to the two-compartment system did not significantly enhance the rate of ammonium appearance in the receiver solution. The results obtained using a real ammonium-containing solution after fermentation of cheese whey showed that Donnan dialysis can be successfully applied for ammonium recovery from such solutions.

7.
Membranes (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877900

RESUMO

This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively. A detailed characterization of the AEMs (water contact angle, ion exchange capacity (IEC), scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV. However, only SDS and SDBS affected the contact angle values. Cleaning of the biofouled membranes using a sodium hypochlorite aqueous solution allows for (partially) recovering their initial properties. Furthermore, this work includes a fouling characterization using real surface and sea water matrixes, confirming the presence of several types of fouling microorganisms in natural streams. A lower adhesion of microorganisms (measured in terms of total bacteria counts) was observed for the modified membranes compared to the unmodified ones. Finally, we propose a cleaning strategy to mitigate biofouling in AEMs that could be easily applied in RED systems for an enhanced long-term process performance.

8.
Membranes (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207023

RESUMO

This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment. Overall, this work validates the technical feasibility of using RO upcycled AEMs in DD and IEMB processes for nitrate removal. This membrane recycling concept might also find applications for the removal and/or recovery of other target negatively charged species.

9.
Membranes (Basel) ; 12(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35207118

RESUMO

Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology-Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia-Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.

10.
Membranes (Basel) ; 10(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707798

RESUMO

Reverse electrodialysis (RED) technology represents a promising electro-membrane process for renewable energy harvesting from aqueous streams with different salinity. However, the performance of the key components of the system, that is, the ion exchange membranes, is limited by both the presence of multivalent ions and fouling phenomena, thus leading to a reduced generated net power density. In this context, the behavior of anion exchange membranes (AEMs) in RED systems is more severely affected, due to the undesirable interactions between their positively charged fixed groups and, mostly negatively charged, foulant materials present in natural streams. Therefore, controlling both the monovalent anion permselectivity and the membrane surface hydrophilicity is crucial. In this respect, different surface modification procedures were considered in the literature, to enhance the above-mentioned properties. This review reports and discusses the currently available approaches for surface modifications of AEMs, such as graft polymerization, dip coating, and layer-by-layer, among others, mainly focusing on preparing monovalent permselective AEMs with antifouling characteristics, but also considering hydrophilicity aspects and identifying the most promising modifying agents to be utilized. Thus, the present study aimed at providing new insights for the further design and development of selective, durable, and cost-effective modified AEMs for an enhanced RED process performance, which is indispensable for a practical implementation of this electro-membrane technology at an industrial scale.

11.
Membranes (Basel) ; 10(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291325

RESUMO

Industrial adoption of nanofiltration (NF) for treatment of low-pH wastewater is hindered by the limited membrane lifetime at strongly acidic conditions. In this study, the electroplating wastewater (EPWW) filtration performance of a novel pH-stable NF membrane is compared against a commercial NF membrane and a reverse osmosis (RO) membrane. The presented membrane is relatively hydrophobic and has its isoelectric point (IEP) at pH 4.1, with a high and positive zeta potential of +10 mV at pH 3. A novel method was developed to determine the molecular weight cut-off (MWCO) at a pH of 2, with a finding that the membrane maintains the same MWCO (~500 Da) as under neutral pH operating conditions, whereas the commercial membrane significantly increases it. In crossflow filtration experiments with simulated EPWW, rejections above 75% are observed for all heavy metals (compared to only 30% of the commercial membrane), while keeping the same pH in the feed and permeate. Despite the relatively lower permeance of the prepared membrane (~1 L/(m2·h·bar) versus ~4 L/(m2·h·bar) of the commercial membrane), its high heavy metals rejection coupled with a very low acid rejection makes it suitable for acid recovery applications.

12.
Membranes (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260505

RESUMO

The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the permeate fluxes obtained during treatment of a synthetic tannery effluent through nanofiltration (NF270 and NF90 membranes) and reverse osmosis (BW30 and SW30) membranes was first performed. Then, a dedicated polymeric membrane was prepared by coating chitosan (cs) on a polyethersulfone (PES) microfiltration membrane (cs-PES MFO22) support. The resulting membrane was characterized by Fourier Transforms Infrared Spectroscopy Attenuated Total Reflectance (FTIR-ATR), Emission Scanning Electronic Microscopy (SEM) to confirm the process of surface modification and cross-linking of chitosan with glutaraldehyde. This membrane was found to be highly effective for chromium removal (>99%), which was more than eight times higher in reference to monovalent cations (e.g., Na+ and K+) and more than six times higher in reference to the divalent cations (Mg2+ and Ca2+) studied. The reverse osmosis permeate conforms to local Algerian regulations regarding being discharged directly into the natural environment (in this case, Reghaia Lake) or into urban sewers linked to wastewater biological treatment stations. While the SW30 membrane proved to be the most effective for purification of the tannery effluent, the chitosan modified membrane proved to be appropriate for recovery of chromium from the reverse osmosis concentrate.

13.
Membranes (Basel) ; 10(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604781

RESUMO

The performance of anion-exchange membranes (AEMs) in Reverse Electrodialysis is hampered by both presence of multivalent ions and fouling phenomena, thus leading to reduced net power density. Therefore, we propose a monolayer surface modification procedure to functionalize Ralex-AEMs with poly(acrylic) acid (PAA) in order to (i) render a monovalent permselectivity, and (ii) minimize organic fouling. Membrane surface modification was carried out by putting heterogeneous AEMs in contact with a PAA-based aqueous solution for 24 h. The resulting modified membranes were firstly characterized by contact angle, water uptake, ion exchange capacity, fixed charge density, and swelling degree measurements, whereas their electrochemical responses were evaluated through cyclic voltammetry. Besides, their membrane electro-resistance was also studied via electrochemical impedance spectroscopy analyses. Finally, membrane permselectivity and fouling behavior in the presence of humic acid were evaluated through mass transport experiments using model NaCl containing solutions. The use of modified PAA-AEMs resulted in a significantly enhanced monovalent permselectivity (sulfate rejection improved by >35%) and membrane hydrophilicity (contact angle decreased by >15%) in comparison with the behavior of unmodified Ralex-AEMs, without compromising the membrane electro-resistance after modification, thus demonstrating the technical feasibility of the proposed membrane modification procedure. This study may therefore provide a feasible way for achieving an improved Reverse Electrodialysis process efficiency.

14.
Membranes (Basel) ; 10(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936780

RESUMO

A novel cellulose-based cross-linked polymer, dicarboxymethyl cellulose (DCMC), has been synthesized and used for methylene blue (MB) removal. Inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier-transform infrared spectroscopy (FTIR), nitrogen porosimetry, and optical microscopy were employed to characterize the structure of the cellulose-based adsorbent. The number of carboxylate groups per gram of polymer (CG) was calculated with sodium content determined by ICP-AES. Systematic equilibrium and kinetic adsorption studies were performed to assess the polymer suitability for dye removal. The effect of pH on its adsorption capacity was also studied and the equilibrium adsorption data was analyzed using Langmuir, Freundlich, and Sips isotherms. At pH = 3, the adsorption isotherms followed the Langmuir model with a maximum adsorption capacity of 887.6 mg/g. At pH = 6.4, the adsorption isotherms produced S-shape curves and were best fitted with the Sips model. The maximum MB uptake increased to 1354.6 mg/g. Pseudo first-order and second-order models were used to fit the kinetic data. A pseudo second-order kinetic model provided the best correlation for the adsorption of MB onto DCMC. Adsorption coupled with membrane filtration achieved 95% methylene blue removal and DCMC can be successfully regenerated and reused in consecutive experiments.

15.
Sci Total Environ ; 652: 40-47, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30352345

RESUMO

Olive pomace is a semi-solid paste resulting from the two-phase olive oil production, being the most significant waste generated by this agro-industry. Olive pomace is reported as an environmental hazard due to its high content in phenolic compounds (phytotoxic). Nevertheless, these compounds, when recovered, can have impactful actions in different human physiological conditions, namely, skin protection, dysfunction treatment or diseases prevention. Therefore, their recovery from olive pomace is crucial for environmental and economical sustainability, without forgetting the functional challenge. In a previous work, lipid and aqueous fractions of olive pomace were studied regarding its major bioactive compounds. The present research aims to describe an environmentally friendly integrated approach to extract and concentrate (by a pressure-driven membrane processing) the phytotoxic compounds of olive pomace. Three types of polymeric composite membranes (NF90, NF270 and BW30) were tested. The composition of the resulting streams (permeates and concentrates) were compared and the process efficiency assessed based on: (1) antioxidant activity and total phenolic and flavonoid contents; (2) inorganic elemental composition (by Inductively Coupled Plasma Atomic Emission Spectroscopy); (3) pH, conductivity and total organic carbon; and (4) permeate flux, membranes' apparent target solutes rejection and fouling index. The BW30 membrane presented the lowest fouling index and was the most effective for extracts concentration, with no phenolic compounds in the permeates, preventing completely the loss of such compounds.


Assuntos
Química Verde , Membranas Artificiais , Olea , Eliminação de Resíduos Líquidos/métodos , Reciclagem
16.
Water Res ; 42(6-7): 1785-95, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18054985

RESUMO

The ion exchange membrane bioreactor (IEMB) proved to be an effective technology for the removal of nitrate and perchlorate from polluted drinking water when using a mono-anion permselective membrane such as Neosepta ACS. Aiming at reducing the cost of the system, this study evaluates the use of a lower-cost anion exchange membrane, which exhibits no preferential mono-anion permselective properties. With this purpose an Excellion I-200 membrane was tested, for the removal of anionic micropollutants, such as nitrate and perchlorate from drinking water supplies. The impact of the lower anion permselectivity of this membrane on the quality of the treated water was determined. It was demonstrated that differences between the membrane properties are responsible for the different permselectivities observed towards multi-valent and mono-valent anions. The use of Excellion I-200 resulted in a less selective removal of perchlorate and nitrate, allowing anions such as sulphate and phosphate species to be transported. When treating 3.1l/m(2)h of water contaminated with 100microg/l of perchlorate and 60mg/l of nitrate, lower removal degrees were obtained (85% of perchlorate and 88% of nitrate), compared with 96% of perchlorate and 99% of nitrate achieved with the Neosepta ACS membrane, operating under the same conditions. However, the Excellion I-200 membrane shows no target anion flux decline during a relatively long period of operation (1 month) and no secondary contamination of the treated water by the carbon source used. These characteristics are essential for a membrane to be successfully used in the IEMB system. Additionally, the selection of the membrane depends on the latter characteristics and on the water quality requirements.


Assuntos
Ânions/isolamento & purificação , Reatores Biológicos , Cromatografia por Troca Iônica/instrumentação , Membranas Artificiais , Concentração de Íons de Hidrogênio , Permeabilidade
17.
Water Res ; 40(2): 231-40, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16343587

RESUMO

This work evaluates the feasibility of the ion exchange membrane bioreactor (IEMB) concept for the simultaneous removal of perchlorate and nitrate from drinking water, when nitrate is present in the ppm range and perchlorate in the ppb range. The IEMB concept combines Donnan dialysis and simultaneous biological degradation of both pollutants. Membrane transport studies showed that Donnan dialysis is suitable for obtaining water with concentrations of perchlorate and nitrate below the recommended levels. However, the pollutants were accumulated in a receiving stream, thus requiring additional treatment before disposal. On the other hand, the IEMB process operated with hydraulic retention times ranging from 1.4 to 8.3h in the water compartment, proved to remove effectively perchlorate and nitrate while preserving the water composition with respect to other ions, thus avoiding secondary contamination of the treated water. For a polluted water stream containing 100 ppb of ClO(4)(-) and 60 ppm of NO(3)(-), the concentrations of both ions in the treated stream were kept below the recommended levels of 4 ppb for ClO(4)(-) and 25 ppm for NO(3)(-). The IEMB system was operated under ethanol limitation, but even under these conditions, an increase of the perchlorate and nitrate concentrations in the treated water was not observed for up to 6 days.


Assuntos
Reatores Biológicos , Nitratos/isolamento & purificação , Percloratos/isolamento & purificação , Purificação da Água/métodos , Troca Iônica , Membranas Artificiais , Nitratos/química , Percloratos/química
18.
Water Res ; 88: 184-198, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497936

RESUMO

Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.


Assuntos
Técnicas Eletroquímicas , Substâncias Húmicas , Troca Iônica , Membranas Artificiais , Salinidade , Espectrometria de Fluorescência/métodos , Água Doce/química , Análise de Componente Principal , Água do Mar/química
19.
Curr Opin Biotechnol ; 15(5): 463-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15464379

RESUMO

Biological treatment processes allow for the effective elimination of anionic micropollutants from drinking water. However, special technologies have to be implemented to eliminate the target pollutants without changing water quality, either by adding new pollutants or removing essential water components. Some innovative technologies that combine the use of membranes with the biological degradation of ionic micropollutants in order to minimize the secondary contamination of treated water include pressure-driven membrane bioreactors, gas-transfer membrane bioreactors and ion exchange membrane bioreactors.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , Purificação da Água/métodos , Ânions/química , Ânions/isolamento & purificação , Biofilmes , Troca Iônica , Membranas Artificiais , Abastecimento de Água
20.
Biotechnol Prog ; 18(2): 296-302, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11934299

RESUMO

An ion exchange membrane bioreactor (IEMB), consisting of a monoanion permselective membrane dialyzer coupled to a stirred anoxic vessel with an enriched mixed denitrifying culture, has been studied for nitrate removal from drinking water. The influence of nitrate and chloride concentrations on the selectivity of nitrate transport in the IEMB process was investigated. With appropriate dosing of chloride ions to the IEMB biocompartment, it was possible to regulate the net bicarbonate flux in the system, thus maintaining the bicarbonate concentration in the treated water at the desired level. The latter was not possible to achieve in Donnan dialysis, operated as a single process in which, besides the lower nitrate removal efficiency found, bicarbonate was co-extracted together with nitrate from the polluted water stream. Residual carbon source (ethanol) and nitrite were not detected in the treated water produced in the IEMB system. With a concentration of nitrate in the polluted water three times higher than the maximum contaminant level of 50 mg L(-1) allowed, the IEMB process was successfully operated for a period of 1 month before exceeding this limit.


Assuntos
Reatores Biológicos , Membranas Artificiais , Nitratos/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Biofilmes , Cloretos/metabolismo , Diálise/métodos , Modelos Químicos , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA