Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 233: 116428, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352950

RESUMO

In the scope, developed a novel copper molybdate decorated polymeric graphitic carbon nitride (CuMoO4@g-C3N4 or CMC) heterojunction nanocomposite in an easy solvothermal environment for the first time. The synthesized CMC improved the photocatalytic degradation of an antibiotic drug [ciprofloxacin (CIP)] and organic dye [Rhodamine B (RhB)]. Consequently, the CMC demonstrates a marvelous crystalline nature with ∼26 nm size, as obtained from XRD analysis. Besides, the surface morphology studies confirm the large-scale construction of flower-like CMC with a typical size of 10-15 nm. The CMC showed efficient catalytic activity for both the pollutants, achieving the degradation of 98% for RhB and 97% for CIP in 35 and 60 min, respectively. The reaction parameters including the concentration of pollutants, catalyst dosages, and scavengers are optimized for the best photocatalytic results. Notably, the trapping tests showed that the •OH and O2•- radicals are the primary oxidative species liable for the photocatalytic process. The recyclability test of the photocatalyst infers that the photocatalyst is highly stable up to the fifth recycle. Our work affords an efficient and ideal path to constructing the new g-C3N4-based architected photocatalyst for toxic wastewater treatment in the near future.


Assuntos
Cobre , Poluentes Ambientais , Ciprofloxacina , Polímeros , Água
2.
Ultrason Sonochem ; 64: 104913, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145518

RESUMO

Ultrasonication is an emerging and evergreen technique for the efficient synthesis of the catalytically active heterostructured materials. In-situ one-pot ultrasonic-assisted synthesis method was demonstrated in this work for the fabrication of silver tungstate encrusted polypyrrole nanocomposite using semi-automatic ultrasonic probe maintained at 34°C/50 kHz ultrasonic frequency and at 150 W ultrasonic power. This material retains enhanced optical, electrical, morphological properties, photocatalytic behavior in photodegradation of congo red dye, tetracycline drug and its electrochemical sensing potential for the effective determination of a broad spectrum of antibacterial drug, nitrofurazone. Optical properties were investigated using UltraViolet-Visible diffuse reflectance spectral (UV-VIS DRS) data along with Tauc's bandgap energy calculations. The morphological properties were examined using FESEM and TEM micrographs. All the PXRD and XPS details prove the effective distribution of PPy on the surface of Ag2WO4 rods with the help of powerful ultrasonic assistance. PPy acted as a support for nucleation and growth of Ag2WO4 and an inhibitor of phase transformations. Ag2WO4/PPy exhibits great photocatalytic behavior while comparing with pure PPy and Ag2WO4 in the degradation of carcinogenic dye congo red and antibiotic drug tetracycline. In addition to that, Ag2WO4/PPy modified GCE exposed a widespread linear range from 0.1 to 107 µM along with a very low detection limit of 12 nM and huge sensitivity of 1.74 µA µM-1cm-2 in the electrochemical determination of nitrofurazone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA