Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Trends Genet ; 35(11): 828-839, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610893

RESUMO

Human germline de novo mutations (DNMs) are both a driver of evolution and an important cause of genetic diseases. In the past few years, whole-genome sequencing (WGS) of parent-offspring trios has facilitated the large-scale detection and study of human DNMs, which has led to exciting discoveries. The overarching theme of all of these studies is that the DNMs of an individual are a complex mixture of mutations that arise through different biological processes acting at different times during human development and life.


Assuntos
Envelhecimento/genética , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa , Mutação , Alelos , Replicação do DNA , Desenvolvimento Embrionário/genética , Genoma Humano , Genômica/métodos , Humanos , Idade Materna , Mosaicismo
3.
Hum Reprod ; 37(6): 1360-1369, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413117

RESUMO

STUDY QUESTION: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER: In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY: DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION: This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (<35 years of age at conception) and older fathers (>45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (<35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers (>45 years of age). LIMITATIONS, REASONS FOR CAUTION: This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS: This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fertilização in vitro , Injeções de Esperma Intracitoplásmicas , Adulto , Criança , Feminino , Fertilização , Humanos , Masculino , Mutação , Projetos Piloto , Injeções de Esperma Intracitoplásmicas/métodos
4.
Hum Genet ; 140(1): 7-19, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32638125

RESUMO

Identifying the genes causing male infertility is important to increase our biological understanding as well as the diagnostic yield and clinical relevance of genetic testing in this disorder. While significant progress has been made in some areas, mainly in our knowledge of the genes underlying rare qualitative sperm defects, the same cannot be said for the genetics of quantitative sperm defects. Technological advances and approaches in genomics are critical for the process of disease gene identification. In this review we highlight the impact of various technological developments on male infertility gene discovery as well as functional validation, going from the past to the present and the future. In particular, we draw attention to the use of unbiased genomics approaches, the development of increasingly relevant functional assays and the importance of large-scale international collaboration to advance disease gene identification in male infertility.


Assuntos
Infertilidade Masculina/genética , Animais , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Genômica/métodos , Humanos , Masculino , Espermatozoides/anormalidades
5.
Hum Reprod ; 36(9): 2597-2611, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34089056

RESUMO

STUDY QUESTION: What are the causative genetic variants in patients with male infertility due to severe sperm motility disorders? SUMMARY ANSWER: We identified high confidence disease-causing variants in multiple genes previously associated with severe sperm motility disorders in 10 out of 21 patients (48%) and variants in novel candidate genes in seven additional patients (33%). WHAT IS KNOWN ALREADY: Severe sperm motility disorders are a form of male infertility characterised by immotile sperm often in combination with a spectrum of structural abnormalities of the sperm flagellum that do not affect viability. Currently, depending on the clinical sub-categorisation, up to 50% of causality in patients with severe sperm motility disorders can be explained by pathogenic variants in at least 22 genes. STUDY DESIGN, SIZE, DURATION: We performed exome sequencing in 21 patients with severe sperm motility disorders from two different clinics. PARTICIPANTS/MATERIALS, SETTING, METHOD: Two groups of infertile men, one from Argentina (n = 9) and one from Australia (n = 12), with clinically defined severe sperm motility disorders (motility <5%) and normal morphology values of 0-4%, were included. All patients in the Argentine cohort were diagnosed with DFS-MMAF, based on light and transmission electron microscopy. Sperm ultrastructural information was not available for the Australian cohort. Exome sequencing was performed in all 21 patients and variants with an allele frequency of <1% in the gnomAD population were prioritised and interpreted. MAIN RESULTS AND ROLE OF CHANCE: In 10 of 21 patients (48%), we identified pathogenic variants in known sperm assembly genes: CFAP43 (3 patients); CFAP44 (2 patients), CFAP58 (1 patient), QRICH2 (2 patients), DNAH1 (1 patient) and DNAH6 (1 patient). The diagnostic rate did not differ markedly between the Argentinian and the Australian cohort (55% and 42%, respectively). Furthermore, we identified patients with variants in the novel human candidate sperm motility genes: DNAH12, DRC1, MDC1, PACRG, SSPL2C and TPTE2. One patient presented with variants in four candidate genes and it remains unclear which variants were responsible for the severe sperm motility defect in this patient. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: In this study, we described patients with either a homozygous or two heterozygous candidate pathogenic variants in genes linked to sperm motility disorders. Due to unavailability of parental DNA, we have not assessed the frequency of de novo or maternally inherited dominant variants and could not determine the parental origin of the mutations to establish in all cases that the mutations are present on both alleles. WIDER IMPLICATIONS OF THE FINDINGS: Our results confirm the likely causal role of variants in six known genes for sperm motility and we demonstrate that exome sequencing is an effective method to diagnose patients with severe sperm motility disorders (10/21 diagnosed; 48%). Furthermore, our analysis revealed six novel candidate genes for severe sperm motility disorders. Genome-wide sequencing of additional patient cohorts and re-analysis of exome data of currently unsolved cases may reveal additional variants in these novel candidate genes. STUDY FUNDING/COMPETING INTEREST(S): This project was supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., J.A.V. and R.I.M.L., The Netherlands Organisation for Scientific Research (918-15-667) to J.A.V., the Royal Society and Wolfson Foundation (WM160091) to J.A.V., as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. and Grants from the National Research Council of Argentina (PIP 0900 and 4584) and ANPCyT (PICT 9591) to H.E.C. and a UUKi Rutherford Fund Fellowship awarded to B.J.H.


Assuntos
Exoma , Infertilidade Masculina , Austrália , Humanos , Infertilidade Masculina/genética , Masculino , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide , Espermatozoides , Sequenciamento do Exoma
7.
Hum Reprod ; 35(1): 240-252, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31985809

RESUMO

STUDY QUESTION: Can exome sequencing identify new genetic causes of globozoospermia? SUMMARY ANSWER: Exome sequencing in 15 cases of unexplained globozoospermia revealed deleterious mutations in seven new genes, of which two have been validated as causing globozoospermia when knocked out in mouse models. WHAT IS KNOWN ALREADY: Globozoospermia is a rare form of male infertility characterised by round-headed sperm and malformation of the acrosome. Although pathogenic variants in DPY19L2 and SPATA16 are known causes of globozoospermia and explain up to 70% of all cases, genetic causality remains unexplained in the remaining patients. STUDY DESIGN, SIZE, DURATION: After pre-screening 16 men for mutations in known globozoospermia genes DPY19L2 and SPATA16, exome sequencing was performed in 15 males with globozoospermia or acrosomal hypoplasia of unknown aetiology. PARTICIPANTS/MATERIALS, SETTING, METHOD: Targeted next-generation sequencing and Sanger sequencing was performed for all 16 patients to screen for single-nucleotide variants and copy number variations in DPY19L2 and SPATA16. After exclusion of one patient with DPY19L2 mutations, we performed exome sequencing for the 15 remaining subjects. We prioritised recessive and X-linked protein-altering variants with an allele frequency of <0.5% in the population database GnomAD in genes with an enhanced expression in the testis. All identified candidate variants were confirmed in patients and, where possible, in family members using Sanger sequencing. Ultrastructural examination of semen from one of the patients allowed for a precise phenotypic characterisation of abnormal spermatozoa. MAIN RESULTS AND ROLE OF CHANCE: After prioritisation and validation, we identified possibly causative variants in eight of 15 patients investigated by exome sequencing. The analysis revealed homozygous nonsense mutations in ZPBP and CCDC62 in two unrelated patients, as well as rare missense mutations in C2CD6 (also known as ALS2CR11), CCIN, C7orf61 and DHNA17 and a frameshift mutation in GGN in six other patients. All variants identified through exome sequencing, except for the variants in DNAH17, were located in a region of homozygosity. Familial segregation of the nonsense variant in ZPBP revealed two fertile brothers and the patient's mother to be heterozygous carriers. Paternal DNA was unavailable. Immunohistochemistry confirmed that ZPBP localises to the acrosome in human spermatozoa. Ultrastructural analysis of spermatozoa in the patient with the C7orf61 mutation revealed a mixture of round heads with no acrosomes (globozoospermia) and ovoid or irregular heads with small acrosomes frequently detached from the sperm head (acrosomal hypoplasia). LIMITATIONS, REASONS FOR CAUTION: Stringent filtering criteria were used in the exome data analysis which could result in possible pathogenic variants remaining undetected. Additionally, functional follow-up is needed for several candidate genes to confirm the impact of these mutations on normal spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS: Our study revealed an important role for mutations in ZPBP and CCDC62 in human globozoospermia as well as five new candidate genes. These findings provide a more comprehensive understanding of the genetics of male infertility and bring us closer to a complete molecular diagnosis for globozoospermia patients which would help to predict the success of reproductive treatments. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by The Netherlands Organisation for Scientific Research (918-15-667); National Health and Medical Research Council of Australia (APP1120356) and the National Council for Scientific Research (CONICET), Argentina, PIP grant 11220120100279CO. The authors have nothing to disclose.


Assuntos
Infertilidade Masculina , Teratozoospermia , Austrália , Variações do Número de Cópias de DNA , Exoma , Humanos , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/genética , Países Baixos , Espermatozoides , Teratozoospermia/genética
8.
Mol Psychiatry ; 22(11): 1604-1614, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27457812

RESUMO

Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.


Assuntos
Deficiência Intelectual/genética , Alelos , Consanguinidade , Exoma/genética , Família , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Humanos , Mutação , Paquistão , Linhagem , Sequenciamento do Exoma/métodos
9.
Clin Genet ; 89(2): 244-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25916247

RESUMO

As whole exome sequencing (WES) is just starting to be used as a diagnostic tool in paediatric neurology for children with a neurological disorder, and patient experiences and preferences with regard to counselling are relatively underexplored. This article explores experiences and preferences of parents with pre-test and post-test counselling in a trial that uses WES for diagnostics. Second, it maps information and communication needs which exceed the counselling protocol, in order to acquire insight into how it can be improved. Data were gathered through in-depth interviews with parents of 15 children who were included in the trial. Information and communication needs of parents differed from the protocol with respect to (i) the type and amount of information provided about WES research, (ii) incidental findings, (iii) communication about progress of the study, and (iv) the communication of the results. Furthermore, parents preferred to have more of a communicative exchange with health care providers about their daily struggles and concerns related to their life with a diseased child and wanted to know how a diagnosis could offer help. There are different ways to meet parental needs, but we suggest that assigning a case manager might be a helpful option that deserves further exploration.


Assuntos
Comunicação , Aconselhamento , Exoma/genética , Neurologia/métodos , Pais , Pediatria , Análise de Sequência de DNA/métodos , Criança , Humanos , Achados Incidentais , Consentimento Livre e Esclarecido , Encaminhamento e Consulta
10.
Clin Genet ; 90(5): 413-419, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26752331

RESUMO

De novo missense mutations and in-frame coding deletions in the X-linked gene SMC1A (structural maintenance of chromosomes 1A), encoding part of the cohesin complex, are known to cause Cornelia de Lange syndrome in both males and females. For a long time, loss-of-function (LoF) mutations in SMC1A were considered incompatible with life, as such mutations had not been reported in neither male nor female patients. However, recently, the authors and others reported LoF mutations in females with intellectual disability (ID) and epilepsy. Here we present the detailed phenotype of two females with de novo LoF mutations in SMC1A, including a de novo mutation of single base deletion [c.2364del, p.(Asn788Lysfs*10)], predicted to result in a frameshift, and a de novo deletion of exon 16, resulting in an out-of-frame mRNA splice product [p.(Leu808Argfs*6)]. By combining our patients with the other recently reported females carrying SMC1A LoF mutations, we ascertained a phenotypic spectrum of (severe) ID, therapy-resistant epilepsy, absence/delay of speech, hypotonia and small hands and feet. Our data show the existence of a novel phenotypic entity - distinct from CdLS - and caused by de novo SMC1A LoF mutations.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Epilepsia/genética , Deficiência Intelectual/genética , Adolescente , Síndrome de Cornélia de Lange/fisiopatologia , Resistência a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Éxons/genética , Feminino , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/genética , Deleção de Sequência
11.
J Genet Couns ; 25(6): 1207-1214, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27098417

RESUMO

The use of whole exome sequencing (WES) for diagnostics of children with rare genetic diseases raises questions about best practices in genetic counselling. While a lot of attention is now given to pre-test counselling procedures for WES, little is known about how parents experience the (positive, negative, or inconclusive) WES results in daily life. To fill this knowledge gap, data were gathered through in-depth interviews with parents of 15 children who underwent WES analysis. WES test results, like results from other genetic tests, evoked relief as well as worries, irrespective of the type of result. Advantages of obtaining a conclusive diagnosis included becoming more accepting towards the situation, being enabled to attune care to the needs of the child, and better coping with feelings of guilt. Disadvantages experienced included a loss of hope for recovery, and a loss by parents of their social network of peers and the effort necessary to re-establish that social network. While parents with conclusive diagnoses were able to re-establish a peer community with the help of social media, parents receiving a possible diagnosis experienced hurdles in seeking peer support, as peers still needed to be identified. These types of psychosocial effects of WES test results for parents are important to take into account for the development of successful genetic counselling strategies.


Assuntos
Adaptação Psicológica , Aconselhamento Genético/psicologia , Testes Genéticos , Pais/psicologia , Doenças Raras/genética , Adulto , Criança , Exoma , Humanos , Doenças Raras/diagnóstico , Análise de Sequência de DNA
12.
J Intern Med ; 278(2): 203-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25639832

RESUMO

OBJECTIVE: The aim of this study was to determine the genetic and immunological defects underlying familial manifestations of an autoimmune disorder. METHODS: Whole-exome sequencing was performed on the index patient with various manifestations of autoimmunity, including hypothyroidism, vitiligo and alopecia. Peripheral blood mononuclear cells and DNA of family members were used for functional and genetic testing of the candidate variants obtained by Sanger sequencing. RESULTS: Exome sequencing identified 233 rare, coding and nonsynonymous variants in the index patient; five were highly conserved and affect genes that have a possible role in autoimmunity. Only a heterozygous missense mutation in the suppressor of cytokine signalling 4 gene (SOCS4) cosegregated with the autoimmune disorder in the family. SOCS4 is a known inhibitor of epidermal growth factor (EGF) receptor signalling, and functional studies demonstrated specific upregulation of EGF-dependent immune stimulation in affected family members. CONCLUSION: We present a family with an autoimmune disorder, probably resulting from dysregulated immune responses due to mutations in SOCS4.


Assuntos
Autoimunidade/genética , DNA/genética , Exoma , Família , Doença de Hashimoto/genética , Mutação de Sentido Incorreto , Proteínas Supressoras da Sinalização de Citocina/genética , Criança , Feminino , Predisposição Genética para Doença , Testes Genéticos , Doença de Hashimoto/imunologia , Doença de Hashimoto/metabolismo , Humanos , Masculino , Linhagem , Análise de Sequência de DNA , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tireoidite Autoimune
13.
Clin Genet ; 87(4): 319-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24863757

RESUMO

The Radboud University Medical Center was among the first to implement two-step exome sequencing in clinical genetic diagnostics. This study is the first to evaluate patient experiences with gene panels based on exome sequencing, using quantified psychological variables: acceptance, psychological distress, expectations of heredity and unsolicited findings. Between August 2011 and July 2012, 177 patients diagnosed with early-onset colorectal/kidney cancer, deafness, blindness or movement disorder consented to diagnostic exome sequencing offered by clinical geneticists. Baseline questionnaires were sent to 141 adults, returned by 111 with median age of 49 [22-79] years and positive family history in 81%. Follow-up included 91 responders at median 4 [2-22] weeks after results from known gene panels per diagnosis group; exome-wide analysis is ongoing. Confirmed or possibly pathogenic mutations were found in 31% with one unsolicited finding (oncogenetic panel). Most patients (92%) were satisfied. There were no significant changes in heredity-specific distress (18% at baseline, 17% at follow-up) and expectations of heredity. Fewer patients expected unsolicited findings at follow-up (29% vs 18%, p = 0.01). Satisfaction and distress were equal in those with vs without mutations. In conclusion, most adults accepted and were satisfied with gene panels based on diagnostic exome sequencing, few reporting distress.


Assuntos
Exoma/genética , Doenças Genéticas Inatas/diagnóstico , Achados Incidentais , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Análise de Sequência de DNA/métodos , Adulto , Fatores Etários , Idoso , Humanos , Pessoa de Meia-Idade , Psicologia , Inquéritos e Questionários
14.
Clin Genet ; 84(5): 415-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23895381

RESUMO

The availability of commercially produced genomic microarrays has resulted in the wide spread implementation of genomic microarrays, often as a first-tier diagnostic test for copy number variant (CNV) screening of patients who are suspected for chromosomal aberrations. Patients with intellectual disability (ID) and/or multiple congenital anomalies (MCA) were traditionally the main focus for this microarray-based CNV screening, but the application of microarrays to other (neurodevelopmental) disorders and tumor diagnostics has also been explored and implemented. The diagnostic workflow for patients with ID is now well established, relying on the identification of rare CNVs and determining their inheritance patterns. However, experience gained through screening large numbers of samples has revealed many subtleties and complexities of CNV interpretation. This has resulted in a better understanding of the contribution of CNVs to genomic disorders not only via de novo occurrence, but also via X-linked and recessive inheritance models as well as through models taking into account mosaicisms, imprinting, and digenic inheritance. In this review, we discuss CNV interpretation within the context of these different genetic disease models and common pitfalls that can occur when searching for supportive evidence that a CNV is clinically relevant.


Assuntos
Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Modelos Genéticos , Anormalidades Múltiplas/diagnóstico , Criança , Bases de Dados Genéticas , Feminino , Genoma Humano , Genômica , Humanos , Padrões de Herança , Deficiência Intelectual/diagnóstico , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
15.
Nat Commun ; 13(1): 154, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013161

RESUMO

De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10-5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Mutação com Perda de Função , Mutação de Sentido Incorreto , Oligospermia/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Adulto , Azoospermia/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/deficiência , Proteínas de Ligação a DNA/deficiência , Exoma , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Oligospermia/patologia , Proteínas Supressoras de Tumor/deficiência , Sequenciamento do Exoma
16.
Cytogenet Genome Res ; 129(4): 275-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20606400

RESUMO

The chromosomal band 17q21.31, containing the microtubule-associated protein tau (MAPT) gene, is a hotspot for chromosomal rearrangements. It is known to contain a common inversion polymorphism of approximately 900 kb in populations with European ancestry. The inverted configuration is linked to a distinct MAPT haplotype, H2, which is relatively common in Europeans but nearly absent in Asian and African populations. Recent studies have demonstrated that the H2 haplotype is ancestral in hominoids, and under positive selection in Europeans. This haplotype is also linked to events leading to the 17q21.31 microdeletion syndrome, one of the most common causes of 'idiopathic' mental retardation in people of European descent. We performed direct analysis of the chromosome structure by fluorescence in situ hybridization and observed heterozygosity of the inversion status for the H2 chromosomes, but not for the H1 haplotype. Inversion heterozygosity was also observed in a mother homozygous for the H2 haplotype, who transmitted the chromosome with the deletion to a proband with 17q21.31 microdeletion syndrome. Our results highlight an allele-specific sensitivity to chromosome rearrangements and suggest that it is the heterozygosity of inversion status that predisposes to the 17q21.31 microdeletion syndrome.


Assuntos
Deleção Cromossômica , Inversão Cromossômica , Cromossomos Humanos Par 17 , Loci Gênicos , Proteínas tau/genética , Alelos , Linhagem Celular , Haplótipos , Humanos , Hibridização in Situ Fluorescente
17.
Mol Psychiatry ; 13(3): 261-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17646849

RESUMO

A homozygous mutation of the CNTNAP2 gene has been associated with a syndrome of focal epilepsy, mental retardation, language regression and other neuropsychiatric problems in children of the Old Order Amish community. Here we report genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia. Genomic deletions of varying sizes affecting the CNTNAP2 gene were identified in three non-related Caucasian patients. In contrast, we did not observe any dosage variation for this gene in 512 healthy controls. Moreover, this genomic region has not been identified as showing large-scale copy number variation. Our data thus confirm an association of CNTNAP2 to epilepsy outside the Old Order Amish population and suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.


Assuntos
Epilepsia/genética , Dosagem de Genes/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , Cromossomos Humanos Par 7 , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Pessoa de Meia-Idade , Análise de Sequência
18.
J Med Genet ; 45(10): 672-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18628311

RESUMO

BACKGROUND: Recent molecular studies of breakpoints of recurrent chromosome rearrangements revealed the role of genomic architecture in their formation. In particular, segmental duplications representing blocks of >1 kb with >90% sequence homology were shown to mediate non-allelic homologous recombination (NAHR). However, the occurrence of the majority of newly detected submicroscopic imbalances cannot be explained by the presence of segmental duplications. Therefore, further studies are needed to investigate whether architectural features other than segmental duplications mediate these rearrangements. METHODS: We analysed a series of patients with breakpoints clustering within chromosome band 5q35. Using high density arrays and subsequent quantitative polymerase chain reaction (qPCR), we characterised the breakpoints of four interstitial deletions (including one associated with an unbalanced paracentric inversion), a duplication and a familial reciprocal t(5;18)(q35;q22) translocation. RESULTS AND CONCLUSION: Five of the breakpoints were located within an interval of approximately 265 kb encompassing the RANBP17 and TLX3 genes. This region is also targeted by the recurrent cryptic t(5;14)(q35;q32) translocation, which occurs in approximately 20% of childhood T cell acute lymphoblastic leukaemia (T-ALL). In silico analysis indicated the architectural features most likely to contribute to the genomic instability of this region, which was supported by our molecular data. Of further interest, in two patients and the familial translocation, the delineated breakpoint regions encompassed highly homologous LINEs (long interspersed nuclear elements), suggesting that NAHR between these LINEs may have mediated these rearrangements.


Assuntos
Quebra Cromossômica , Cromossomos Humanos Par 5 , Instabilidade Genômica , Mapeamento Cromossômico , Deleção de Genes , Duplicação Gênica , Humanos , Translocação Genética
19.
J Med Genet ; 45(11): 710-20, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18628315

RESUMO

BACKGROUND: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. AIM: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. RESULTS: We estimate the prevalence of the syndrome to be 1 in 16,000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729-41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p<10(-5)). CONCLUSION: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Deficiências do Desenvolvimento , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Inversão Cromossômica , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Face/patologia , Feminino , Humanos , Lactente , Masculino , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Prevalência , Adulto Jovem , Proteínas tau
20.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189718

RESUMO

Candida vaginitis is a frequent clinical diagnosis with up to 8% of women experiencing recurrent vulvovaginal candidiasis (RVVC) globally. RVVC is characterized by at least three episodes per year. Most patients with RVVC lack known risk factors, suggesting a role for genetic risk factors in this condition. Through integration of genomic approaches and immunological studies in two independent cohorts of patients with RVVC and healthy individuals, we identified genes and cellular processes that contribute to the pathogenesis of RVVC, including cellular morphogenesis and metabolism, and cellular adhesion. We further identified SIGLEC15, a lectin expressed by various immune cells that binds sialic acid-containing structures, as a candidate gene involved in RVVC susceptibility. Candida stimulation induced SIGLEC15 expression in human peripheral blood mononuclear cells (PBMCs) and a polymorphism in the SIGLEC15 gene that was associated with RVVC in the patient cohorts led to an altered cytokine profile after PBMC stimulation. The same polymorphism led to an increase in IL1B and NLRP3 expression after Candida stimulation in HeLa cells in vitro. Last, Siglec15 expression was induced by Candida at the vaginal surface of mice, where in vivo silencing of Siglec15 led to an increase in the fungal burden. Siglec15 silencing was additionally accompanied by an increase in polymorphonuclear leukocytes during the course of infection. Identification of these pathways and cellular processes contributes to a better understanding of RVVC and may open new therapeutic avenues.


Assuntos
Candida albicans/patogenicidade , Genômica/métodos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Animais , Candidíase Vulvovaginal/genética , Candidíase Vulvovaginal/metabolismo , Citocinas/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA