Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728594

RESUMO

We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 h after weaning, identifying a total of 2074 bacterial operational taxonomic units. HR and control mice did not significantly differ for measures of alpha diversity, but HR mice had a higher relative abundance of the family Clostridiaceae. These results differ from a study of rats, where a line bred for high forced-treadmill endurance and that also ran more on wheels had lower relative abundance of Clostridiaceae, as compared with a line bred for low endurance that ran less on wheels. Within the HR and control groups, replicate lines had unique microbiomes based on unweighted UniFrac beta diversity, indicating random genetic drift and/or multiple adaptive responses to selection.


Assuntos
Microbioma Gastrointestinal , Camundongos , Ratos , Animais , RNA Ribossômico 16S , Teste de Esforço , Modelos Animais de Doenças , Estado Nutricional
2.
Am J Phys Anthropol ; 172(1): 41-47, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32091137

RESUMO

OBJECTIVES: Sodium, a vital micronutrient that is often in scarce supply for tropical herbivores, is sometimes found at high concentration in decaying wood. We tested two hypotheses for chimpanzees: first, that wood-eating facilitates acquisition of sodium; second, that wood-eating occurs in response to the low availability of sodium from other dietary sources. MATERIALS AND METHODS: We studied the behavior of more than 50 chimpanzees of all age-sex classes in the Kanyawara community of Kibale National Park, Uganda. We quantified the sodium content of dietary items, including wood samples from tree species that chimpanzees consumed or did not consume. To assess variation in sodium intake, we used 7 years of data on time spent feeding on plant foods, 18 months of data on rates of food intake by adult females, and 20 years of data on meat-eating. RESULTS: Major dietary sources of sodium were wood, fruits and meat. Chimpanzees consumed wood primarily from decaying trees of Neoboutonia macrocalyx (Euphorbiaceae), which had substantially higher sodium content than all other dietary items tested. Wood-eating was negatively correlated with fruit-eating. Females ate wood more often than males, while males had a greater probability of consuming meat at predation events. DISCUSSION: We propose that females ate wood more often than males because females had reduced access to meat, their preferred source of sodium. This hypothesis suggests that the need for sodium is a motivating reason for chimpanzees to consume both meat and wood.


Assuntos
Ingestão de Alimentos , Carne/análise , Pan troglodytes/fisiologia , Sódio na Dieta/análise , Madeira/química , Animais , Dieta , Feminino , Masculino , Sódio , Especificidade da Espécie , Uganda
3.
Nutrients ; 13(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34579167

RESUMO

Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most species. There is growing evidence that the gut microbiota has a pivotal role in host health and age-related pathological conditions. Yet, it is still unclear how CR and the gut microbiota are related to healthy aging. Here, we report findings from a small longitudinal study of male C57BL/6 mice maintained on either ad libitum or mild (15%) CR diets from 21 months of age and tracked until natural death. We demonstrate that CR results in a significantly reduced rate of increase in the frailty index (FI), a well-established indicator of aging. We observed significant alterations in diversity, as well as compositional patterns of the mouse gut microbiota during the aging process. Interrogating the FI-related microbial features using machine learning techniques, we show that gut microbial signatures from 21-month-old mice can predict the healthy aging of 30-month-old mice with reasonable accuracy. This study deepens our understanding of the links between CR, gut microbiota, and frailty in the aging process of mice.


Assuntos
Envelhecimento , Restrição Calórica/métodos , Microbioma Gastrointestinal , Animais , Fragilidade , Envelhecimento Saudável , Humanos , Longevidade , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Curr Biol ; 31(3): 613-620.e3, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232664

RESUMO

Survival in primates is facilitated by commensal gut microbes that ferment otherwise indigestible plant matter, resist colonization by pathogens, and train the developing immune system.1,2 However, humans are unique among primates in that we consume highly digestible foods, wean early, mature slowly, and exhibit high lifelong investments in maintenance.3-6 These adaptations suggest that lifetime trajectories of human-microbial relationships could differ from those of our closest living relatives. Here, we profile the gut microbiota of 166 wild chimpanzees aged 8 months to 67 years in the Kibale National Park, Uganda and compare the patterns of gut microbial maturation to those previously observed in humans. We found that chimpanzee gut microbial alpha-diversity, composition, density, interindividual variation, and within-individual change over time varied significantly with age. Notably, gut microbial signatures in infants <2 years old were distinct across all five metrics. Infant chimpanzee guts were enriched in some of the same taxa prevalent in infant humans (e.g., Bifidobacterium, Streptococcus, and Bacteroides), and chimpanzee gut microbial communities, like those of humans, exhibited higher interindividual variation in infancy versus later in life. However, in direct contrast to human infants, chimpanzee infants harbored surprisingly high-diversity rather than low-diversity gut bacterial communities compared with older conspecifics. These data indicate differential trajectories of gut microbiota development in humans and chimpanzees that are consistent with interspecific differences in lactation, diet, and immune function. Probing the phenotypic consequences of differential early-life gut microbial diversity in chimpanzees and other primates will illuminate the life history impacts of the hominid-microbiome partnership.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Dieta , Feminino , Humanos , Pan troglodytes , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA