Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(10): 4286-4293, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245018

RESUMO

Benzene, toluene, and xylene (BTX) are serious air pollutants emitted by the chemical industry. Real-time monitoring of these air pollutants would be a valuable tool to regulate emissions of these compounds and reduce the harm they cause to human health. Here, we demonstrate the first detection of BTX using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). The instrument was operated in the deep-ultraviolet spectral region between 252 and 286 nm, where aromatic compounds have intense π → π* absorption bands. The mirror reflectivity was calibrated by two methods and exceeded 99.63% at 266 nm. At an integration time of 60 s, the 1σ measurement sensitivities were estimated to be 7.2 ppbv for benzene, 21.9 ppbv for toluene, 10.2 ppbv for m-xylene, and 4.8 ppbv for p-xylene, respectively. The absorption cross sections of BTX were measured in this work with an uncertainty of 10.0% at a resolution of 0.74 nm. The absorption cross sections reported in this work were in good agreement with those from earlier studies after accounting for differences in spectral resolution. To demonstrate the ability of the instrument to quantify complex mixtures, the concentrations of m-xylene and p-xylene have been retrieved under five different mixing ratios. Instrumental improvements and measurements strategies for use in different applications are discussed.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Benzeno , Humanos , Análise Espectral , Tolueno/análise , Xilenos
2.
Anal Chem ; 94(7): 3368-3375, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143171

RESUMO

Accurate and sensitive measurements of NO2 play an extremely important role in atmospheric studies. Increasingly, studies require NO2 measurements with parts per trillion by volume (pptv-level) detection limits. Other desirable instrument attributes include ease of use, long-term stability, and low maintenance. In this work, we report the development of an amplitude-modulated multimode-diode-laser-based cavity-enhanced absorption spectroscopy (AM-CEAS) system operating at 406 nm that uses phase-sensitive detection for extremely sensitive NO2 detection. The laser was TTL-modulated at 35 kHz. The mirror reflectivity was determined to be 99.985% based on the ring-down time measurement. The cavity base length was 47.5 cm, giving an effective absorption pathlength of ∼3.26 km. AM-CEAS achieved a 1σ detection precision of 35 pptv in a 1 s data acquisition time (4.98 × 10-10 cm-1), over 4 times lower than that attained using a ring-down approach and the same optical system. The AM-CEAS precision improved to 8 pptv over a data acquisition time of 30 s (1.14 × 10-10 cm-1). The AM-CEAS method with the multimode diode laser integrates the advantages of high light injection efficiency like on-axis alignment cavity ring-down spectroscopy, low cavity-mode noise like off-axis alignment CEAS, and narrow-bandwidth high-sensitivity weak signal detection of modulation spectroscopy, providing a powerful, straightforward, and general method for ultrasensitive absorption and extinction measurements.


Assuntos
Lasers , Dióxido de Nitrogênio , Luz , Análise Espectral/métodos
3.
Appl Opt ; 58(32): 8743-8750, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31873651

RESUMO

We report the development of an improved spherical mirror multipass-cell-based interband cascade laser (ICL) spectrometer for ambient formaldehyde (HCHO) detection. The multipass cell consists of two easily manufactured spherical mirrors that are low cost, and have a simple structure, large mirror area utilization, and dense spot pattern. Optical interference caused by the multipath cell was largely reduced, resulting in good sensitivity. Using wavelength modulation spectroscopy (WMS), a detection precision (${1} \sigma $1σ) of 51 pptv in 10 s was achieved with an absorption pathlength of 96 m, which compared favorably with the performance of other state-of-the-art instruments. The precision can be further improved by using a long absorption pathlength configuration and by removing fringe-like optical noise caused by the collimation lens. Ambient application of the developed spectrometer was demonstrated.

4.
Anal Chem ; 90(5): 3307-3312, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29439577

RESUMO

The chemical amplification (PERCA) method has been widely used for measuring peroxy radical concentrations in the troposphere. The accuracy and sensitivity of the method is critically dependent on the chain length (CL)-that is, the number of radical amplification cycles. However, CL decreases strongly with higher relative humidity (RH). So far, there does not appear to be a method to overcome this impact. Here we report the development of a Nafion dryer based dual-channel PERCA instrument. The large diameter Nafion dryer efficiently removes water vapor in milliseconds and minimally affects the sample. The low losses of peroxy radicals on the Nafion membrane make it an attractive tool for raising the CL, and thereby the measurement accuracy and sensitivity of PERCA systems. The reported instrument demonstrates this promising and simple method to minimize water vapor interference.

5.
Opt Express ; 26(25): 33484-33500, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645500

RESUMO

The spectral dependence of aerosol light absorption (αabs) and single-scattering albedo-[ω, defined as the ratio of the scattering (αscat) and extinction coefficients (αext = αabs + αscat)]-has proven effective in classifying dominant aerosol types. It is also helpful in understanding aerosol sources, transformation, climate and environmental effects, testing aerosol models, and improving the retrieval accuracy of satellite and remote sensing data. Despite the significant progress that has been made with measurement of light absorption and ω, many of the reported instruments either operate at a fixed wavelength or can only measure a single optical parameter. Quantitative multi-parameter wavelength-dependent measurement remains a challenge. In this work, a three-wavelength cavity-enhanced albedometer was developed. The albedometer can measure multiple optical parameters, αext, αscat, αabs, and ω, at λ = 365, 532, and 660 nm, in real time. The instrument's performance was evaluated using four different type laboratory generated aerosols, including polystyrene latex spheres (PSL, non-absorbing); ammonium sulfate (AS, non-absorbing); suwannee river fulvic acid (SRFA, slightly absorbing; a proxy for light absorbing organic aerosol); and nigrosin (strongly absorbing).

6.
Opt Express ; 25(22): 26910-26922, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092174

RESUMO

This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO2). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm3 and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO2 and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO2 were improved to 8 pptv and 40 pptv in 21 s.

7.
Appl Opt ; 56(11): E16-E22, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414337

RESUMO

We report on the development of a blue light-emitting-diode-based incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for the measurement of the aerosol extinction coefficient at λ=461 nm. With an effective absorption path length of 2.8 km, an optimum detection limit of 0.05 Mm-1 (5×10-10 cm-1) was achieved with an averaging time of 84 s. The baseline drift of the developed spectrometer was about ±0.3 Mm-1 over 2.5 h (1σ standard deviation). The performance of the system was evaluated with laboratory-generated monodispersed polystyrene latex (PSL) spheres. The retrieved complex refractive index of PSL agreed well with previously reported values. The relative humidity (RH) dependence of the aerosol extinction coefficient was measured using IBBCEAS. The measured extinction enhancement factor values for 200 nm dry ammonium sulphate particles at different RH were in good agreement with the modeled values. Field performance of the aerosol extinction spectrometer was demonstrated at the Hefei Radiation Observatory site.

8.
Analyst ; 137(10): 2318-21, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22525400

RESUMO

Optical cavities are commonly used to increase the sensitivity of absorption measurements, but have not been extensively used below 300 nm, mainly owing to the limited light sources at these wavelengths. While some progress has been made using cavity ring-down spectroscopy, these systems rely on complex and expensive lasers. Here we investigate an approach combining Cavity-Enhanced Absorption Spectroscopy (CEAS) with an inexpensive low vapour pressure mercury lamp for sensitive absorption measurements at 253.7 nm. We demonstrate that the CEAS absorption in our system is 50 times greater than the absorption found in a single-pass configuration; using this approach, we obtained limits of detection of 8.1 pptv (66 ng m(-3)) for gaseous elemental mercury and 8.4 ppbv for ozone. We evaluate the performance of the system and discuss potential improvements and applications of this approach.

9.
Environ Sci Technol ; 46(19): 10413-21, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22934673

RESUMO

Tidally exposed macroalgae emit large amounts of I(2) and iodocarbons that produce hotspots of iodine chemistry and intense particle nucleation events in the coastal marine boundary layer. Current emission rates are poorly characterized, however, with reported emission rates varying by 3 orders of magnitude. In this study, I(2) emissions from 25 Laminaria digitata samples were investigated in a simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples were exposed to air with or without O(3) and to varying irradiances. Emission of I(2) occurred in four distinct stages: (1) moderate emissions from partially submerged samples; (2) a strong release by fully emerged samples; (3) slowing or stopping of I(2) release; and (4) later pulses of I(2) evident in some samples. Emission rates were highly variable and ranged from 7 to 616 pmol min(-1) gFW(-1) in ozone-free air, with a median value of 55 pmol min(-1) gFW(-1) for 20 samples.


Assuntos
Iodo , Laminaria/fisiologia , Biologia Marinha/métodos , Alga Marinha/fisiologia , Ar , Clorofila/análise , Clorofila A , Iodo/análise , Biologia Marinha/instrumentação , Ozônio , Análise Espectral/métodos
10.
Environ Sci Technol ; 46(19): 10422-8, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22934718

RESUMO

Laboratory studies into particle formation from Laminaria digitata macroalgae were undertaken to elucidate aerosol formation for a range of I(2) (0.3-76 ppb(v)) and O(3) (<3-96 ppb(v)) mixing ratios and light levels (E(PAR) = 15, 100, and 235 µmol photons m(-2) s(-1)). No clear pattern was observed for I(2) or aerosol parameters as a function of light levels. Aerosol mass fluxes and particle number concentrations, were, however, correlated with I(2) mixing ratios for low O(3) mixing ratios of <3 ppb(v) (R(2) = 0.7 and 0.83, respectively for low light levels, and R(2) = 0.95 and 0.98, respectively for medium light levels). Additional experiments into particle production as a function of laboratory-generated I(2), over a mixing ratio range of 1-8 ppb(v), were conducted under moderate O(3) mixing ratios (∼24 ppb(v)) where a clear, 100-fold or greater, increase in the aerosol number concentrations and mass fluxes was observed compared to the low O(3) experiments. A linear relationship between particle concentration and I(2) was found, in reasonable agreement with previous studies. Scaling the laboratory relationship to aerosol concentrations typical of the coastal boundary layer suggests a I(2) mixing ratio range of 6-93 ppt(v) can account for the observed particle production events. Aerosol number concentration produced from I(2) is more than a factor of 10 higher than that produced from CH(2)I(2) for the same mixing ratios.


Assuntos
Iodo , Laminaria/fisiologia , Biologia Marinha/métodos , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Kelp , Luz , Ozônio
11.
Cryst Growth Des ; 22(11): 6504-6520, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36817751

RESUMO

Piroxicam (PRM) and meloxicam (MEL) are two nonsteroidal anti-inflammatory drugs, belonging to the Biopharmaceutics Classification System Class II drugs. In this study, six novel pharmaceutical salts of PRM and MEL with three basic organic counterions, that is, 4-aminopyridine (4AP), 4-dimethylaminopyridine (4DMP), and piperazine (PPZ), were prepared by both slurrying and slow evaporation. These salts were characterized by single-crystal and powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy. All six salts, especially MEL-4DMP and MEL-4AP, showed a significantly improved apparent solubility and dissolution rate in sodium phosphate solution compared with the pure APIs. Notably, PRM-4AP and PRM-4DMP salts exhibited enhanced fluorescence, and the PRM-PPZ salt showed weaker fluorescence compared with that of pure PRM due to different luminescence mechanisms.

12.
J Phys Chem A ; 115(44): 12235-42, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21958133

RESUMO

Nitrophenols and methylnitrophenols have been identified as photolytic precursors of nitrous acid, HONO, but their gas-phase absorption has not previously been reported. In this study, the absorption cross sections of 2-nitrophenol, 3-methyl-2-nitrophenol, and 4-methyl-2-nitrophenol were measured from 320 to 450 nm using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS). The benzaldehyde absorption spectrum was measured to validate the approach and was in good agreement with literature spectra. The nitrophenol absorption cross sections are large (ca. 10(-17) cm(2) molecule(-1)) and blue-shifted about 20 nm compared to previously measured solution spectra. Besides forming HONO, nitrophenol absorption influences other photochemistry by reducing the available actinic flux. The magnitudes of both effects are evaluated as a function of solar zenith angle, and nitrophenol absorption is shown to lower the photolysis rates of O(3) and NO(2).


Assuntos
Atmosfera , Nitrofenóis/química , Oxigênio/química , Raios Ultravioleta , Cinética , Fotólise , Espectrofotometria Ultravioleta
13.
Appl Opt ; 48(4): B159-71, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183574

RESUMO

An incoherent broadband cavity-enhanced absorption spectroscopy setup employing a 20 m long optical cavity is described for sensitive in situ measurements of light extinction between 630 and 690 nm. The setup was installed at the SAPHIR atmospheric simulation chamber during an intercomparison of instruments for nitrate (NO(3)) radical detection. The long cavity was stable for the entire duration of the two week campaign. A detection limit of approximately 2 pptv for NO(3) in an acquisition time of 5 s was established during that time. In addition to monitoring NO(3), nitrogen dioxide (NO(2)) concentrations were simultaneously retrieved and compared against concurrent measurements by a chemiluminescence detector. Some results from the campaign are presented to demonstrate the performance of the instrument in an atmosphere containing water vapor and inorganic aerosol. The spectral analysis of NO(3) and NO(2), the concentration dependence of the water absorption cross sections, and the retrieval of aerosol extinction are discussed. The first deployment of the setup in the field is also briefly described.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 178-183, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30991294

RESUMO

Most extinction measurements require a stable light source to attain high precision and accuracy. Here, we present a convenient approach to normalize light source intensity in broadband optical cavity measurements. In the absence of sample extinction, we show that the in-band signal - the high finesse spectral region of the optical cavity in which sample extinction is measured with high sensitivity - is strongly correlated with the out-of-band signal. The out-of-band signal is insensitive to sample extinction and can act as a proxy for light source intensity. This normalization approach strongly suppressed in-band intensity changes in two incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instruments with dissimilar light sources and optical cavity properties. Intensity fluctuations in an arc lamp system were suppressed by a factor of 7 to 16 and in the LED spectrometer by a factor of 10. This approach therefore improves the accuracy and precision of extinction measurements where either property is limited by the light source stability.

15.
Sci Rep ; 6: 35038, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733773

RESUMO

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

16.
Environ Sci Technol ; 42(3): 890-5, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18323118

RESUMO

The first application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) in the near-ultraviolet for the simultaneous detection of two key atmospheric trace species, HONO and NO2, is reported. For both compounds the absorption is measured between 360 and 380 nm with a compact cavity-enhanced spectrometer employing a high power light-emitting diode. Detection limits of approximately 4 ppbv for HONO and approximately 14 ppbv for NO2 are reported for a static gas cell setup using a 20 s acquisition time. Based on an acquisition time of 10 min and an optical cavity length of 4.5 m detection limits of approximately 0.13 ppbv and approximately 0.38 ppbv were found for HONO and NO2 in a 4 m3 atmospheric simulation chamber, demonstrating the usefulness of this approach for in situ monitoring of these important species in laboratory studies or field campaigns.


Assuntos
Dióxido de Nitrogênio/análise , Ácido Nitroso/análise , Análise Espectral/métodos , Raios Ultravioleta , Absorção , Luz
17.
Environ Sci Technol ; 40(21): 6758-63, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17144307

RESUMO

We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity. Using a straightforward spectrometer configuration, we show that detection limits corresponding to typical atmospheric concentrations can be achieved with a measurement time of seconds to a few minutes. In particular, with only moderate reflectivity mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 min acquisition time. The high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 makes it useful in laboratory studies of atmospheric processes as well as having obvious potential for field measurements.


Assuntos
Monitoramento Ambiental/métodos , Óxidos de Nitrogênio/química , Espectrofotometria/métodos , Absorção , Poluentes Atmosféricos/química , Atmosfera , Gases , Óxidos de Nitrogênio/metabolismo , Oxigênio/metabolismo , Sensibilidade e Especificidade , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA