Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Opt Lett ; 49(5): 1257-1260, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426987

RESUMO

The introduction of quantum methods in spectroscopy can provide enhanced performance and technical advantages in the management of noise. We investigate the application of quantum illumination in a pump and probe experiment. Thermal lensing in a suspension of gold nanorods is explored using a classical beam as the pump and the emission from parametric downconversion as the probe. We obtain an insightful description of the behavior of the suspension under pumping with a method known to provide good noise rejection. Our findings are a further step toward investigating the effects of quantum light in complex plasmonic media.

2.
Chemphyschem ; 25(12): e202400074, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517325

RESUMO

In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.

3.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982977

RESUMO

A promising therapeutic strategy to delay and/or prevent the onset of neurodegenerative diseases (NDs) could be to restore neuroprotective pathways physiologically triggered by neurons against stress injury. Recently, we identified the accumulation of neuroglobin (NGB) in neuronal cells, induced by the 17ß-estradiol (E2)/estrogen receptor ß (ERß) axis, as a protective response that increases mitochondria functionality and prevents the activation of apoptosis, increasing neuron resilience against oxidative stress. Here, we would verify if resveratrol (Res), an ERß ligand, could reactivate NGB accumulation and its protective effects against oxidative stress in neuronal-derived cells (i.e., SH-SY5Y cells). Our results demonstrate that ERß/NGB is a novel pathway triggered by low Res concentrations that lead to rapid and persistent NGB accumulation in the cytosol and in mitochondria, where the protein contributes to reducing the apoptotic death induced by hydrogen peroxide (H2O2). Intriguingly, Res conjugation with gold nanoparticles increases the stilbene efficacy in enhancing neuron resilience against oxidative stress. As a whole, ERß/NGB axis regulation is a novel mechanism triggered by low concentration of Res to regulate, specifically, the neuronal cell resilience against oxidative stress reducing the triggering of the apoptotic cascade.


Assuntos
Nanopartículas Metálicas , Neuroblastoma , Humanos , Resveratrol/farmacologia , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor beta de Estrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ouro/farmacologia , Neuroglobina/farmacologia , Estresse Oxidativo , Apoptose , Neurônios/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768470

RESUMO

Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17ß-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Pró-Fármacos , Feminino , Humanos , Neuroglobina/farmacologia , Neoplasias da Mama/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ouro/farmacologia , Estradiol/farmacologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Estrogênios/farmacologia
5.
Inorg Chem ; 61(12): 4919-4937, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285628

RESUMO

Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Indazóis , Ligantes , Estrutura Molecular
6.
J Enzyme Inhib Med Chem ; 37(1): 1812-1820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35758192

RESUMO

Several epidemiological studies suggest that a diet rich in fruit and vegetables reduces the incidence of neurodegenerative diseases. Resveratrol (Res) and its dimethylated metabolite, pterostibene (Ptb), have been largely studied for their neuroprotective action. The clinical use of Res is limited because of its rapid metabolism and its poor bioavailability. Ptb with two methoxy groups and one hydroxyl group has a good membrane permeability, metabolic stability and higher in vivo bioavailability in comparison with Res. The metabolism and pharmacokinetics of Ptb are still sparse, probably due to the lack of tools that allow following the Ptb destiny both in living cells and in vivo. In this contest, we propose two Ptb fluorescent derivatives where Ptb has been functionalised by benzofurazan and rhodamine-B-isothiocyanate, compounds 1 and 2, respectively. Here, we report the synthesis, the optical and structural characterisation of 1 and 2, and, their putative cytotoxicity in two different cell lines.


Assuntos
Corantes Fluorescentes , Estilbenos , Disponibilidade Biológica , Corantes Fluorescentes/farmacologia , Resveratrol/química , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia
7.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012662

RESUMO

Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3-10. The copper(II) complexes were prepared by the reaction of CuCl2·2H2O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)4]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with LOMe and L2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction.


Assuntos
Complexos de Coordenação , Cobre , Acetatos , Cisplatino , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cristalografia por Raios X , Ésteres/farmacologia , Humanos , Ligantes
8.
Nanomedicine ; 17: 276-286, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30708054

RESUMO

Gold nanoparticles functionalized with 3-mercapto-1-propansulfonate (AuNPs-3MPS) have been prepared and loaded with Methotrexate (MTX), an immunosuppressive agent used in the systemic treatment of moderate-severe inflammatory diseases. The effects of the AuNPs-3MPS@MTX topically administered in vitro on skin model and in vivo on imiquimod-induced psoriasis-like mice model, have been studied. Clinical response, epidermal thickness, cell proliferation rate and inflammation were tested. AuNPs-3MPS@MTX treated mice showed a decreasing of scaling and erythema score, reduction of epidermal thickness, parakeratosis and hyperkeratosis, compared to AuNPs-3MPS treated mice. Immunohistochemistry analysis staining displayed that Ki67, K6 CD3 and CD8 stainings were reduced in AuNPs-3MPS@MTX treated mice. Blood evaluation showed no differences in blood count and in ALT and AST levels before and after AuNPs-3MPS or AuNPs-3MPS@MTX treatment. Topical AuNPs-3MPS@MTX treatment is able to induce a reduction of keratinocytes hyperproliferation, epidermal thickness and also inflammatory infiltrate in vivo on imiquimod-induced psoriasis like mice model.


Assuntos
Portadores de Fármacos/química , Ouro/química , Imunossupressores/administração & dosagem , Metotrexato/administração & dosagem , Psoríase/tratamento farmacológico , Compostos de Sulfidrila/química , Administração Tópica , Animais , Modelos Animais de Doenças , Imunossupressores/uso terapêutico , Nanopartículas Metálicas/química , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL
9.
Sensors (Basel) ; 17(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135946

RESUMO

A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs) is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III) was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM) images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III) and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

10.
Phys Chem Chem Phys ; 17(11): 7404-10, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25700131

RESUMO

The hidden structural properties of semicrystalline polymer films are revealed by nanofocused X-ray scattering studies. X-ray cross-correlation analysis (XCCA) is employed to diffraction patterns from blends of poly(3-hexylthiophene) (P3HT) with gold nanoparticles (AuNPs). Spatially resolved maps of orientational distribution of crystalline domains allow us to distinguish sample regions of predominant face-on morphology, with a continuous transition to edge-on morphology. The average size of crystalline domains was determined to be of the order of 10 nm. As compared to pristine P3HT film, the P3HT/AuNPs blend is characterized by substantial ordering of crystalline domains, which can be induced by Au nanoparticles. The inhomogeneous structure of the polymer film is clearly visualized on the spatially resolved nanoscale 2D maps obtained using XCCA. Our results suggest that the observed changes of the polymer matrix within crystalline regions can be attributed to nanoconfinement in the presence of gold nanoparticles.

11.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674954

RESUMO

Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. Among the most used techniques, the employment of adsorbent materials is certainly advantageous, as they are easy to synthesize and are cheap. In this work, poly(ethylene glycol) diacrylate (PEGDA) hydrogels doped with silver nanoparticles (AgNPs) for removing Hg(II) ions from water are presented. AgNPs were embedded in PEGDA-based matrices by using a photo-polymerizable solution. By exploiting a custom-made 3D printer, the filters were synthesized. The kinetics of interaction was studied, revealing that the adsorption equilibrium is achieved in 8 h. Subsequently, the adsorption isotherms of PEGDA doped with AgNPs towards Hg(II) ions were studied at different temperatures (4 °C, 25 °C, and 50 °C). In all cases, the best isotherm model was the Langmuir one (revealing that the chemisorption is the driving process and the most favorable one), with maximum adsorption capacities equal to 0.55, 0.57, and 0.61 mg/g, respectively. Finally, the removal efficiency was evaluated for the three temperatures, obtaining for 4 °C, 25 °C, and 50 °C the values 94%, 94%, and 86%, respectively.

12.
ACS Appl Nano Mater ; 7(2): 2401-2413, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298253

RESUMO

Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.

13.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38831692

RESUMO

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Assuntos
Adamantano , Antineoplásicos , Complexos de Coordenação , Cobre , Glioblastoma , Humanos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Ligantes , Adamantano/farmacologia , Adamantano/química , Adamantano/síntese química , Adamantano/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Relação Estrutura-Atividade , Acetatos/química , Acetatos/farmacologia , Acetatos/síntese química
14.
Nanotechnology ; 24(15): 155503, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23518508

RESUMO

Nanostructured composite materials based on polyaniline (PANI) and gold nanoparticles have been prepared by means of an osmosis based method. Several morphologies have been obtained for the pristine nanoPANI and for nanoPANI-Au composite, ranging from amorphous to sponge-like and spherical shapes. On the basis of this morphological investigation, different materials with high surface area have been selected and tested as chemical interactive materials for room temperature gas and vapor sensing. The resistive sensor devices have been exposed to different vapor organic compounds (VOCs) of interest in the fields of environmental monitoring and biomedical applications, such as toluene, acetic acid, ethanol, methanol, acetonitrile, water, ammonia and nitrogen dioxide. The effect of doping with H2SO4 has been studied for both nanoPANI and nanoPANI-Au samples. In particular, nanoPANI-Au showed sensitivity to ammonia (up to 10 ppm) higher than that to other VOCs or interfering analytes. The facile preparation method and the improved properties achieved for the polyaniline-gold composite materials are significant in the nanomaterials field and have promise for applications in ammonia vapor monitoring.


Assuntos
Compostos de Anilina/química , Ouro/química , Nanopartículas Metálicas/química , Nanocompostos/química , Amônia/análise , Gases/análise , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Espectrofotometria Ultravioleta
15.
Gels ; 9(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37888391

RESUMO

A gel is a type of material that exhibits a semi-solid, jelly-like state, characterized by a three-dimensional network of interconnected particles or molecules dispersed within a liquid or solid medium [...].

16.
Sci Total Environ ; 864: 161181, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581299

RESUMO

Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Humanos , Ecossistema , Nanoestruturas/toxicidade , Nanotecnologia , Poluição Ambiental
17.
Environ Sci Pollut Res Int ; 30(54): 116175-116185, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37907823

RESUMO

Owing to the unique physicochemical properties and the low manufacturing costs, silver nanoparticles (AgNPs) have gained growing interest and their application has expanded considerably in industrial and agricultural sectors. The large-scale production of these nanoparticles inevitably entails their direct or indirect release into the environment, raising some concerns about their hazardous aspects. Callus culture represents an important tool in toxicological studies to evaluate the impact of nanomaterials on plants and their potential environmental risk. In this study, we investigated the chronic phytotoxic effects of different concentrations of novel bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on callus culture of Populus nigra L., a pioneer tree species in the riparian ecosystem. Our results showed that AgNPs-Cit-L-Cys were more toxic on poplar calli compared to AgNO3, especially at low concentration (2.5 mg/L), leading to a significant reduction in biomass production, accompanied by a decrease in protein content, a significant increase in both lipid peroxidation level, ascorbate peroxidase (APX), and catalase (CAT) enzymatic activities. In addition, these findings suggested that the harmful activity of AgNPs-Cit-L-Cys might be correlated with their physicochemical properties and not solely attributed to the released Ag+ ions and confirmed that AgNPs-Cit-L-Cys phytoxicity is associated to oxidative stress.


Assuntos
Nanopartículas Metálicas , Populus , Nitrato de Prata/toxicidade , Nitrato de Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Ecossistema , Prata/toxicidade
18.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616336

RESUMO

Microplastics are widely spread in aquatic environments. Although they are considered among the most alarming contaminants, toxic effects on organisms are unclear, particularly on freshwater plants. In this study, the duckweed Lemna minuta was grown on different concentrations (50, 100 mg/L) of poly(styrene-co-methyl methacrylate) microplastics (MP) and exposure times (T0, T7, T14, T28 days). The phytotoxic effects of MP were investigated by analyzing several plant morphological and biochemical parameters (frond and root size, plant growth, chlorophyll, and malondialdehyde content). Observations by scanning electron microscope revealed MP adsorption on plant surfaces. Exposition to MP adversely affected plant growth and chlorophyll content with respect to both MP concentrations and exposure times. Conversely, malondialdehyde measurements did not indicate an alteration of oxidative lipid damage in plant tissue. The presence of MP induced root elongation when compared to the control plants. The effects of MP on L. minuta plants were more evident at T28. These results contribute to a better understanding of MP's impact on aquatic plants and highlight that MP contamination manifests with chronic-type effects, which are thus detectable at longer exposure times of 7 days than those traditionally used in phytotoxicology tests on duckweeds.

19.
Sci Total Environ ; 891: 164459, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247734

RESUMO

Contamination by microplastics (0.1 µm-5 mm plastic fragments) is currently one of the major threats to the conservation of aquatic and terrestrial ecosystems worldwide. Growing awareness on this issue has led to an increase in studies on the effects of microplastics on freshwater organisms, although there are still few investigations on possible transfer of this contaminant along water trophic chains from producers to primary consumers. In this study, aquatic herbivorous larvae of the moth Cataclysta lemnata were fed on microplastic-free (control) and contaminated (MPs treatment) Lemna minuta fronds. For treatments, Lemna fronds were grown in mineral water enriched with fluorescent microparticles of poly(styrene-co-methyl methacrylate) (MPs, 100 mg/L) and then fed to the larvae as a food source. Microplastics effects on larvae were tested at 0, 7, 14 and 21 days of exposure, corresponding to sensitive phases of the insect life cycle. Contaminant impact was assessed based on some parameters such as viability, larva body size/weight, feeding alterations and regularity of the insect life cycle. Using scanning electron and fluorescence microscopy, the presence of microplastics in the larvae was verified. The finding of fluorescent microplastics in both the intestinal lumen and excrement samples showed that larvae ingested contaminated Lemna fronds. In addition, larvae fed contaminated fronds were strongly affected by the presence of microplastic contaminant over time, showing high mortality (90 %) and total inability to complete the life cycle after 21 days by failing to reach the winged adult phase. In control tests, survival rates were higher than in treatments, and 50 % of the larvae managed to pupate and emerge as moths, reaching the adult phase. The results show that there was a trophic transfer of microplastics from producer to primary consumer along a freshwater food chain, generating negative effects on the life cycle of this aquatic herbivore.


Assuntos
Araceae , Lepidópteros , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Cadeia Alimentar , Ecossistema , Poluentes Químicos da Água/análise , Larva , Estágios do Ciclo de Vida , Água Doce
20.
Nanoscale Adv ; 5(15): 3924-3933, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496614

RESUMO

Gold nanorods stabilized by binary ligand mixtures of cetyltrimethylammonium bromide (CTAB, primary ligand) and ascorbic acid or hydroquinone were investigated by complementary synchrotron radiation-induced spectroscopies and microscopies, with the aim to find evidence of the influence of the secondary ligand molecular and chemical structure on the nanorod shapes and size ratios. Indeed, as it is well known that the CTAB interaction with Ag(i) ions at the NR surface plays a key role in directing the anisotropic growth of nanorods, the possibility to finely control the NR shape and dimension by opportunely selecting the secondary ligands opens new perspectives in the design and synthesis of anisotropic nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA