RESUMO
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized ß1-adrenergic receptors (ß1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic ß1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The ß1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and ß1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
RESUMO
BACKGROUND: Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS: In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-ß-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS: In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION: KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.
Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Ratos , Feminino , Animais , Estudos Cross-Over , Cetonas/farmacologia , Voluntários Saudáveis , Método Simples-Cego , Ratos Wistar , Etanol/farmacologia , Edulcorantes , Concentração Alcoólica no Sangue , Suplementos Nutricionais , ÁguaRESUMO
Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.
Assuntos
Anticorpos Monoclonais Humanizados , Encéfalo , Etanol , Neurônios , Estresse Oxidativo , Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Microglia/metabolismo , Microglia/efeitos dos fármacos , Receptores de LDL/metabolismo , Ratos Sprague-Dawley , Modelos Animais de DoençasRESUMO
Addiction is a chronic relapsing disease with high morbidity and mortality. Treatments for addiction include pharmacological and psychosocial interventions; however, currently available medications are limited in number and efficacy. The glucagon-like-peptide-1 (GLP-1) system is emerging as a potential novel pharmacotherapeutic target for alcohol and other substance use disorders (ASUDs). In this review, we summarize and discuss the wealth of available evidence from testing GLP-1 receptor (GLP-1R) agonist medications in preclinical models and humans with ASUDs, possible mechanisms underlying the impact of GLP-1R agonists on alcohol/substance use, gaps in knowledge, and future directions. Most of the research with GLP-1R agonists has been conducted in relation to alcohol use; psychostimulants, opioids, and nicotine have also been investigated. Preclinical evidence suggests that GLP-1R agonists reduce alcohol/substance use and other related outcomes. The main proposed mechanisms are related to reward processing, stress, and cognitive function, as well as broader mechanisms related to satiety, changes in gastric motility, and glucose homeostasis. More in-depth mechanistic studies are warranted. Clinical studies have been limited and their findings have been less conclusive; however, most support the safety and potential efficacy of GLP-1R agonists in ASUD treatment. Identifying preferred compounds, as well as possible subgroups who are most responsive to GLP-1R agonists are some of the key research questions to translate the promising preclinical data into clinical settings. Several clinical trials are underway to test GLP-1R agonists in people with ASUDs.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológicoRESUMO
The opioid overdose death toll in the United States is an ongoing public health crisis. We characterized the magnitude and duration of respiratory depression, the leading cause of death in opioid overdose cases, induced by heroin or fentanyl and the development of tolerance in male and female rats. We used whole-body plethysmography to first establish dose-response curves by recording breathing for 60 minutes post-intravenous opioid injection. We then tested the development of respiratory tolerance to acute heroin or fentanyl over several weeks and to chronic fentanyl with acute fentanyl or heroin challenge. Heroin and fentanyl each provoked dose-dependent respiratory depression. Heroin caused prolonged (45-60 minute) respiratory depression in female and male rats, characterized by decreased frequency, tidal volume, and minute ventilation and increased inspiratory time and apneic pause. Fentanyl produced similar changes with a shorter duration (10-15 minutes). High-dose heroin or fentanyl produced robust respiratory depression that was slightly more severe in females and, when given intermittently (acute doses 2 to 3 weeks apart), did not lead to tolerance. In contrast, chronic fentanyl delivered with an osmotic minipump resulted in tolerance to acute fentanyl and heroin, characterized by a shorter duration of respiratory depression. This effect persisted during withdrawal in males only. Our model and experimental design will allow for investigation of the neurobiology of opioid-induced respiratory depression and for testing potential therapeutics to reverse respiratory depression or stimulate breathing. SIGNIFICANCE STATEMENT: Fentanyl was more potent and had shorter duration in producing respiratory depression than heroin in both sexes, whereas female rats were more sensitive than males to heroin-induced respiratory depression. Tolerance/cross-tolerance develops in chronic fentanyl administration but is minimized with long interadministration intervals.
Assuntos
Overdose de Opiáceos , Insuficiência Respiratória , Feminino , Ratos , Masculino , Animais , Heroína/efeitos adversos , Fentanila/efeitos adversos , Analgésicos Opioides/farmacologia , Caracteres Sexuais , Overdose de Opiáceos/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , PletismografiaRESUMO
Preclinical and clinical studies have identified the ghrelin receptor [growth hormone secretagogue receptor (GHSR)1a] as a potential target for treating alcohol use disorder. A recent phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high-throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentration-response assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison with its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced ß-arrestin recruitment relative to its parent compound. Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knockout for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. SIGNIFICANCE STATEMENT: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR)1a have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provide new structure-activity relationship insight into GHSR1a inverse agonism.
Assuntos
Alcoolismo , Ratos , Masculino , Feminino , Animais , Receptores de Grelina/metabolismo , Agonismo Inverso de DrogasRESUMO
Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD.
Assuntos
Alcoolismo , Humanos , Masculino , Feminino , Ratos , Animais , Camundongos , Alcoolismo/tratamento farmacológico , Espironolactona/uso terapêutico , Espironolactona/farmacologia , Roedores , Estudos de Coortes , Consumo de Bebidas Alcoólicas/tratamento farmacológico , EtanolRESUMO
The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.
Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Corticosteroides , Animais , Hormônio Liberador da Corticotropina , Ratos , Peixe-ZebraRESUMO
Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence. Regulation of CeA synaptic activity by GR is currently unknown. Here, we utilized mifepristone and the selective GR antagonist CORT118335 (both at 10 µM) as pharmacological tools to dissect the role of GR on GABA transmission in male, adult Sprague-Dawley rats using slice electrophysiology. We subjected rats to chronic intermittent alcohol vapor exposure for 5-7 weeks to induce alcohol dependence. A subset of dependent rats subsequently underwent protracted alcohol withdrawal for 2 weeks, and air-exposed rats served as controls. Mifepristone reduced the frequency of pharmacologically-isolated spontaneous inhibitory postsynaptic currents (sIPSC) in the CeA (medial subdivision) without affecting postsynaptic measures in all groups, suggesting decreased GABA release with the largest effect in dependent rats. CORT118335 did not significantly alter GABA transmission in naïve, but decreased sIPSC frequency in dependent rats. Similarly, mifepristone decreased amplitudes of evoked inhibitory postsynaptic potentials only in dependent rats and during protracted withdrawal. Collectively, our study provides insight into regulation of CeA GABAergic synapses by GR. Chronic ethanol enhances the efficiency of mifepristone and CORT118335, thus highlighting the potential of drugs targeting GR as a promising pharmacological avenue for the treatment of AUD.
Assuntos
Alcoolismo/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Tonsila do Cerebelo/fisiopatologia , Animais , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologiaRESUMO
Oxytocin administration has been reported to decrease consumption, withdrawal, and drug-seeking associated with several drugs of abuse and thus represents a promising pharmacological approach to treat drug addiction. We used an established rat model of alcohol dependence to investigate oxytocin's effects on dependence-induced alcohol drinking, enhanced motivation for alcohol, and altered GABAergic transmission in the central nucleus of the amygdala (CeA). Intraperitoneal oxytocin administration blocked escalated alcohol drinking and the enhanced motivation for alcohol in alcohol-dependent but not nondependent rats. Intranasal oxytocin delivery fully replicated these effects. Intraperitoneal administration had minor but significant effects of reducing locomotion and intake of non-alcoholic palatable solutions, whereas intranasal oxytocin administration did not. In dependent rats, intracerebroventricular administration of oxytocin or the oxytocin receptor agonist PF-06655075, which does not cross the blood-brain barrier (i.e., it would not diffuse to the periphery), but not systemic administration of PF-06655075 (i.e., it would not reach the brain), decreased alcohol drinking. Administration of a peripherally restricted oxytocin receptor antagonist did not reverse the effect of intranasal oxytocin on alcohol drinking. Ex vivo electrophysiological recordings from CeA neurons indicated that oxytocin decreases evoked GABA transmission in nondependent but not in dependent rats, whereas oxytocin decreased the amplitude of spontaneous GABAergic responses in both groups. Oxytocin blocked the facilitatory effects of acute alcohol on GABA release in the CeA of dependent but not nondependent rats. Together, these results provide converging evidence that oxytocin specifically and selectively blocks the enhanced motivation for alcohol drinking that develops in alcohol dependence likely via a central mechanism that may result from altered oxytocin effects on CeA GABA transmission in alcohol dependence. Neuroadaptations in endogenous oxytocin signaling may provide a mechanism to further our understanding of alcohol use disorder.
Assuntos
Alcoolismo/tratamento farmacológico , Neurônios GABAérgicos/efeitos dos fármacos , Ocitocina/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Etanol/metabolismo , Etanol/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Injeções Intraperitoneais , Masculino , Motivação/efeitos dos fármacos , Neurônios/fisiologia , Ocitocina/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transmissão Sináptica/fisiologiaRESUMO
Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.
Assuntos
Etanol/metabolismo , Grelina/metabolismo , Receptores de Grelina/metabolismo , Animais , Glicemia/metabolismo , Grelina/análogos & derivados , Humanos , Masculino , Ratos , Transdução de SinaisRESUMO
Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review was to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.
Assuntos
Alcoolismo/epidemiologia , Alcoolismo/terapia , Dor Crônica/epidemiologia , Dor Crônica/terapia , Manejo da Dor/tendências , Pesquisa Translacional Biomédica/tendências , Alcoolismo/psicologia , Animais , Dor Crônica/psicologia , Ensaios Clínicos como Assunto/métodos , Comorbidade , Modelos Animais de Doenças , Previsões , Humanos , Manejo da Dor/métodos , Pesquisa Translacional Biomédica/métodos , Resultado do TratamentoRESUMO
AIM: The purpose of this brief narrative review is to address the complexities and benefits of extending animal alcohol addiction research to the human domain, emphasizing Allostasis and Incentive Sensitization, two models that inform many pre-clinical and clinical studies. METHODS: The work reviewed includes a range of approaches, including: a) animal and human studies that target the biology of craving and compulsive consumption; b) human investigations that utilize alcohol self-administration and alcohol challenge paradigms, in some cases across 10 years; c) questionnaires that document changes in the positive and negative reinforcing effects of alcohol with increasing severity of addiction; and d) genomic structural equation modeling based on data from animal and human studies. RESULTS: Several general themes emerge from specific study findings. First, positive reinforcement is characteristic of early stage addiction and sometimes diminishes with increasing severity, consistent with both Allostasis and Incentive Sensitization. Second, evidence is less consistent for the predominance of negative reinforcement in later stages of addiction, a key tenant of Allostasis. Finally, there are important individual differences in motivation to drink at a given point in time as well as person-specific change patterns across time. CONCLUSIONS: Key constructs of addiction, like stage and reinforcement, are by necessity operationalized differently in animal and human studies. Similarly, testing the validity of addiction models requires different strategies by the two research domains. Although such differences are challenging, they are not insurmountable, and there is much to be gained in understanding and treating addiction by combining pre-clinical and clinical approaches.
Assuntos
Alcoolismo/psicologia , Comportamento Aditivo/psicologia , Fissura/efeitos dos fármacos , Modelos Animais de Doenças , Motivação/efeitos dos fármacos , Reforço Psicológico , Alcoolismo/diagnóstico , Alcoolismo/genética , Animais , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/genética , Fissura/fisiologia , Etanol/administração & dosagem , Humanos , Motivação/genética , Autoadministração/métodos , Autoadministração/psicologiaRESUMO
Excessive alcohol consumption is associated with neuroinflammation, which likely contributes to alcohol-related pathology. However, positron emission tomography (PET) studies using radioligands for the 18-kDa translocator protein (TSPO), which is considered a biomarker of neuroinflammation, reported decreased binding in alcohol use disorder (AUD) participants compared to controls. In contrast, autoradiographic findings in alcohol exposed rats reported increases in TSPO radioligand binding. To assess if these discrepancies reflected differences between in vitro and in vivo methodologies, we compared in vitro autoradiography (using [3 H]PBR28 and [3 H]PK11195) with in vivo PET (using [11 C]PBR28) in male, Wistar rats exposed to chronic alcohol-vapor (dependent n = 10) and in rats exposed to air-vapor (nondependent n = 10). PET scans were obtained with [11 C]PBR28, after which rats were euthanized and the brains were harvested for autoradiography with [3 H]PBR28 and [3 H]PK11195 (n = 7 dependent and n = 7 nondependent), and binding quantified in hippocampus, thalamus, and parietal cortex. Autoradiography revealed significantly higher binding in alcohol-dependent rats for both radioligands in thalamus and hippocampus (trend level for [3 H]PBR28) compared to nondependent rats, and these group differences were stronger for [3 H]PK11195 than [3 H]PBR28. In contrast, PET measures obtained in the same rats showed no group difference in [11 C]PBR28 binding. Our in vitro data are consistent with neuroinflammation associated with chronic alcohol exposure. Failure to observe similar increases in [11 C]PBR28 binding in vivo suggests the possibility that a mechanism mediated by chronic alcohol exposure interferes with [11 C]PBR28 binding to TSPO in vivo. These data question the sensitivity of PBR28 PET as a methodology to assess neuroinflammation in AUD.
Assuntos
Alcoolismo/metabolismo , Autorradiografia , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Lobo Parietal/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Alcoolismo/complicações , Alcoolismo/diagnóstico por imagem , Animais , Autorradiografia/normas , Hipocampo/diagnóstico por imagem , Técnicas In Vitro , Inflamação/diagnóstico por imagem , Inflamação/etiologia , Microscopia Intravital , Masculino , Lobo Parietal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/normas , Ensaio Radioligante , Ratos , Ratos Wistar , Tálamo/diagnóstico por imagemRESUMO
AIMS: The development of novel and more effective medications for alcohol use disorder (AUD) is an important unmet medical need. Drug repositioning or repurposing is an appealing strategy to bring new therapies to the clinic because it greatly reduces the overall costs of drug development and expedites the availability of treatments to those who need them. Probenecid, p-(di-n-propylsulfamyl)-benzoic acid, is a drug used clinically to treat hyperuricemia and gout due to its activity as an inhibitor of the kidneys' organic anion transporter that reclaims uric acid from urine. Probenecid also inhibits pannexin1 channels that are involved in purinergic neurotransmission and inflammation, which have been implicated in alcohol's effects and motivation for alcohol. Therefore, we tested the effects of probenecid on alcohol intake in rodents. METHODS: We tested the effects of probenecid on operant oral alcohol self-administration in alcohol-dependent rats during acute withdrawal as well as in nondependent rats and in the drinking-in-the-dark (DID) paradigm of binge-like drinking in mice. RESULTS: Probenecid reduced alcohol intake in both dependent and nondependent rats and in the DID paradigm in mice without affecting water or saccharin intake, indicating that probenecid's effect was selective for alcohol and not the result of a general reduction in reward. CONCLUSIONS: These results raise the possibility that pannexin1 is a novel therapeutic target for the treatment of AUD. The clinical use of probenecid has been found to be generally safe, suggesting that it can be a candidate for drug repositioning for the treatment of AUD.
Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Conexinas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Etanol/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/uso terapêutico , Adjuvantes Farmacêuticos/farmacologia , Adjuvantes Farmacêuticos/uso terapêutico , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Conexinas/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos , Ratos Wistar , AutoadministraçãoRESUMO
Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT: Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.
Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Receptor 4 Toll-Like/antagonistas & inibidoresRESUMO
UNLABELLED: Abstinence from alcohol is associated with the recruitment of neurons in the central nucleus of the amygdala (CeA) in nondependent rats that binge drink alcohol and in alcohol-dependent rats. However, whether the recruitment of this neuronal ensemble in the CeA is causally related to excessive alcohol drinking or if it represents a consequence of excessive drinking remains unknown. We tested the hypothesis that the recruitment of a neuronal ensemble in the CeA during abstinence is required for excessive alcohol drinking in nondependent rats that binge drink alcohol and in alcohol-dependent rats. We found that inactivation of the CeA neuronal ensemble during abstinence significantly decreased alcohol drinking in both groups. In nondependent rats, the decrease in alcohol intake was transient and returned to normal the day after the injection. In dependent rats, inactivation of the neuronal ensemble with Daun02 produced a long-term decrease in alcohol drinking. Moreover, we observed a significant reduction of somatic withdrawal signs in dependent animals that were injected with Daun02 in the CeA. These results indicate that the recruitment of a neuronal ensemble in the CeA during abstinence from alcohol is causally related to excessive alcohol drinking in alcohol-dependent rats, whereas a similar neuronal ensemble only partially contributed to alcohol-binge-like drinking in nondependent rats. These results identify a critical neurobiological mechanism that may be required for the transition to alcohol dependence, suggesting that focusing on the neuronal ensemble in the CeA may lead to a better understanding of the etiology of alcohol use disorders and improve medication development. SIGNIFICANCE STATEMENT: Alcohol dependence recruits neurons in the central nucleus of the amygdala (CeA). Here, we found that inactivation of a specific dependence-induced neuronal ensemble in the CeA reversed excessive alcohol drinking and somatic signs of alcohol dependence in rats. These results identify a critical neurobiological mechanism that is required for alcohol dependence, suggesting that targeting dependence neuronal ensembles may lead to a better understanding of the etiology of alcohol use disorders, with implications for diagnosis, prevention, and treatment.
Assuntos
Alcoolismo/patologia , Núcleo Central da Amígdala/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Masculino , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos da radiação , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Ratos Transgênicos , Esquema de Reforço , Autoadministração , Estatísticas não Paramétricas , Fatores de TempoRESUMO
UNLABELLED: Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT: Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling yields divergent effects, depending on the brain region, thereby questioning the viability of systemic TrkB targeting for the treatment of cocaine use disorders. Our study provides first-time evidence that systemic administration of a brain-penetrant TrkB antagonist (tat-cyclotraxin-B) reduces several behavioral measures of cocaine dependence, without altering motor performance or reinforcement by a sweet palatable solution. In addition, although cocaine self-administration produced opposite effects on TrkB signaling in the nucleus accumbens and prefrontal cortex, tat-cyclotraxin-B administration normalized these cocaine-induced changes in both brain regions.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Glicoproteínas de Membrana/antagonistas & inibidores , Núcleo Accumbens/metabolismo , Peptídeos Cíclicos/administração & dosagem , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Injeções Intravenosas , Masculino , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Peptídeos Cíclicos/farmacocinética , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Wistar , Receptor trkB , Autoadministração/métodos , Resultado do TratamentoRESUMO
Alcohol and nicotine are the two most co-abused drugs in the world. Previous studies have shown that nicotine can increase alcohol drinking in nondependent rats, yet it is unknown whether nicotine facilitates the transition to alcohol dependence. We tested the hypothesis that chronic nicotine will speed up the escalation of alcohol drinking in rats and that this effect will be accompanied by activation of sparsely distributed neurons (neuronal ensembles) throughout the brain that are specifically recruited by the combination of nicotine and alcohol. Rats were trained to respond for alcohol and made dependent using chronic, intermittent exposure to alcohol vapor, while receiving daily nicotine (0.8 mg/kg) injections. Identification of neuronal ensembles was performed after the last operant session, using immunohistochemistry. Nicotine produced an early escalation of alcohol drinking associated with compulsive alcohol drinking in dependent, but not in nondependent rats (air exposed), as measured by increased progressive-ratio responding and increased responding despite adverse consequences. The combination of nicotine and alcohol produced the recruitment of discrete and phenotype-specific neuronal ensembles (â¼4-13% of total neuronal population) in the nucleus accumbens core, dorsomedial prefrontal cortex, central nucleus of the amygdala, bed nucleus of stria terminalis, and posterior ventral tegmental area. Blockade of nicotinic receptors using mecamylamine (1 mg/kg) prevented both the behavioral and neuronal effects of nicotine in dependent rats. These results demonstrate that nicotine and activation of nicotinic receptors are critical factors in the development of alcohol dependence through the dysregulation of a set of interconnected neuronal ensembles throughout the brain.
Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/metabolismo , Comportamento Compulsivo/complicações , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Recompensa , Animais , Encéfalo/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/administração & dosagem , Glutamato Descarboxilase/metabolismo , Masculino , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinina/administração & dosagem , Ratos , Ratos Wistar , Autoadministração , Fatores de TempoRESUMO
Given that the κ opioid receptor (KOR) system has been implicated in psychostimulant abuse, we evaluated whether the selective KOR antagonist norbinaltorphimine dihydrochloride (nor-BNI) would attenuate the escalation of methamphetamine (METH) intake in an extended-access self-administration model. Systemic nor-BNI decreased the escalation of intake of long-access (LgA) but not short-access (ShA) self-administration. nor-BNI also decreased elevated progressive-ratio (PR) breakpoints in rats in the LgA condition and continued to decrease intake after 17 d of abstinence, demonstrating that the effects of a nor-BNI injection are long lasting. Rats with an ShA history showed an increase in prodynorphin immunoreactivity in both the nucleus accumbens (NAc) core and shell, but LgA animals showed a selective increase in the NAc shell. Other cohorts of rats received nor-BNI directly into the NAc shell or core and entered into ShA or LgA. nor-BNI infusion in the NAc shell, but not NAc core, attenuated escalation of intake and PR responding for METH in LgA rats. These data indicate that the development and/or expression of compulsive-like responding for METH under LgA conditions depends on activation of the KOR system in the NAc shell and suggest that the dynorphin-KOR system is a central component of the neuroplasticity associated with negative reinforcement systems that drive the dark side of addiction.