Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Membr Biol ; 249(4): 523-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072138

RESUMO

We investigate the phase transition stages for detergent-mediated liposome solubilization of bio-mimetic membranes with the motivation of integrating membrane-bound Photosystem I into bio-hybrid opto-electronic devices. To this end, the interaction of two non-ionic detergents n-dodecyl-ß-D-maltoside (DDM) and Triton X-100 (TX-100) with two types of phospholipids, namely DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), are examined. Specifically, solubilization processes for large unilamellar liposomes are studied with the aid of turbidity measurements, dynamic light scattering, and cryo-transmission electron microscopy imaging. Our results indicate that the solubilization process is well depicted by a three-stage model, wherein the lamellar-to-micellar transitions for DPhPC liposomes are dictated by the critical detergent/phospholipid ratios. The solubilization of DPhPC by DDM is devoid of formation of a "gel-like" phase. Furthermore, our results indicate that DDM is a stable candidate for DPhPC solubilization and proteoliposome formation. Finally, although the solubilization of DPPG with DDM indicated the familiar three-stage process, the same process with TX-100 indicate structural deformation of vesicles into complex network of kinetically trapped micro- and nanostructured arrangements of lipid bilayers.


Assuntos
Detergentes/química , Lipídeos/química , Lipossomos/química , Transição de Fase , Lipossomos/ultraestrutura , Micelas , Estrutura Molecular , Fosfatidilgliceróis/química , Solubilidade/efeitos dos fármacos , Tensoativos/farmacologia
2.
Langmuir ; 31(47): 12883-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26556227

RESUMO

The droplet interface bilayer (DIB)--a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets--has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet-oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: "lipid-in", in which phospholipids in the form of liposomes are placed in water, and "lipid-out", in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In this study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. We also clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Adsorção , Cinética
3.
Soft Matter ; 11(38): 7592-605, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26289743

RESUMO

Thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow for determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.


Assuntos
Capacitância Elétrica , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Alcanos/química , Eletroumectação , Solventes/química , Tensão Superficial
4.
Soft Matter ; 10(15): 2530-8, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24647872

RESUMO

Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers (µDIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the µDIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and fission: when forming µDIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform shrinking: when using the lipid-in method (lipids in water phase) to form µDIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and unzipping: finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.

5.
Biomicrofluidics ; 12(2): 024101, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29576833

RESUMO

In this article, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%-16% reduction in area per lipid for DOPC and POPC, respectively. Finally, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupture potential, and specific capacitance.

6.
Lab Chip ; 16(11): 2116-25, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27164314

RESUMO

The droplet interface bilayer (DIB) is a promising technique for assembling lipid membrane-based materials and devices using water droplets in oil, but it has largely been limited to laboratory environments due to its liquid construction. With a vision to transform this lab-based technique into a more-durable embodiment, we investigate the use of a polymer-based organogel to encapsulate DIBs within a more-solid material matrix to improve their handling and portability. Specifically, a temperature-sensitive organogel formed from hexadecane and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer is used to replace the liquid solvent that surrounds the lipid-coated droplets to establish a novel liquid-in-gel DIB system. Through specific capacitance measurements and single-channel recordings of the pore forming peptide alamethicin, we verify that the structural and functional membrane properties are retained when DIBs are assembled within SEBS organogel. In addition, we demonstrate that organogel encapsulation offers improved handling of droplets and yields DIBs with a near 3× higher bilayer durability, as quantified by the lateral acceleration required to rupture the membrane, compared to liquid-in-liquid DIBs in oil. This encapsulated DIB system provides a barrier against contamination from the environment and offers a new material platform for supporting multilayered DIB-based devices as well as other digital microfluidic systems that feature water droplets in oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA