Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016748

RESUMO

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Assuntos
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Genoma Fúngico , Metaboloma , Metabolismo Secundário/genética , Aspergillus/classificação , Aspergillus/genética , Aspergillus flavus/classificação , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especiação Genética , Genômica , Metagenômica , Família Multigênica , Filogenia , Estados Unidos
2.
Curr Biol ; 32(7): 1523-1533.e6, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35235767

RESUMO

Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.


Assuntos
Microbiota , Ralstonia solanacearum , Bactérias , Fungos , Habitação , Simbiose
3.
Nat Commun ; 13(1): 4828, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973982

RESUMO

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.


Assuntos
Anti-Infecciosos , Vias Biossintéticas , Antibacterianos/metabolismo , Anti-Infecciosos/metabolismo , Aspergillus fumigatus/metabolismo , Carbono/metabolismo , Cobre/metabolismo , Cianetos , Fungos/genética , Família Multigênica , Valina/genética
4.
Microorganisms ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683444

RESUMO

In order to gain a comprehensive understanding of plant disease in natural and agricultural ecosystems, it is essential to examine plant disease in multi-pathogen-host systems. Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici are vascular wilt pathogens that can result in heavy yield losses in susceptible hosts such as tomato. Although both pathogens occupy the xylem, the costs of mixed infections on wilt disease are unknown. Here, we characterize the consequences of co-infection with R. solanacearum and F. oxysporum using tomato as the model host. Our results demonstrate that bacterial wilt severity is reduced in co-infections, that bikaverin synthesis by Fusarium contributes to bacterial wilt reduction, and that the arrival time of each microbe at the infection court is important in driving the severity of wilt disease. Further, analysis of the co-infection root secretome identified previously uncharacterized secreted metabolites that reduce R. solanacearum growth in vitro and provide protection to tomato seedlings against bacterial wilt disease. Taken together, these results highlight the need to understand the consequences of mixed infections in plant disease.

5.
J Fungi (Basel) ; 6(4)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114069

RESUMO

Fungi serve as a biological scaffold for bacterial attachment. In some specialized interactions, the bacteria will invade the fungal host, which in turn provides protection and nutrients for the bacteria. Mechanisms of the physical interactions between fungi and bacteria have been studied in both clinical and agricultural settings, as discussed in this review. Fungi and bacteria that are a part of these dynamic interactions can have altered growth and development as well as changes in microbial fitness as it pertains to antibiotic resistance, nutrient acquisition, and microbial dispersal. Consequences of these interactions are not just limited to the respective microorganisms, but also have major impacts in the health of humans and plants alike. Examining the mechanisms behind the physical interactions of fungi and bacteria will provide us with an understanding of multi-kingdom community processes and allow for the development of therapeutic approaches for disease in both ecological settings.

6.
Nat Commun ; 11(1): 5158, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056992

RESUMO

Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Ácidos Linoleicos/metabolismo , Oxilipinas/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/metabolismo , Mutação , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Front Microbiol ; 10: 403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941105

RESUMO

An important goal of the mycotoxin research community is to develop comprehensive strategies for mycotoxin control and detoxification. Although significant progress has been made in devising such strategies, yet, there are barriers to overcome and gaps to fill in order to design effective mycotoxin management techniques. This is in part due to a lack of understanding of why fungi produce these toxic metabolites. Here we present cumulative evidence from the literature that indicates an important ecological role for mycotoxins, with particular focus on Fusarium mycotoxins. Further, we suggest that understanding how mycotoxin levels are regulated by microbial encounters can offer novel insights for mycotoxin control in food and feed. Microbial degradation of mycotoxins provides a wealth of chemical information that can be harnessed for large-scale mycotoxin detoxification efforts.

8.
mBio ; 9(3)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789359

RESUMO

Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum, we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi, we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium, we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks.IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments.


Assuntos
Botrytis/fisiologia , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Antibiose , Botrytis/genética , Fusarium/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Metabolismo Secundário , Xantonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA