Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Chem ; 95(15): 6383-6390, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023260

RESUMO

In the field of nanotoxicology, the detection and size characterization of nanoparticles (NPs) in biological tissues become increasingly important. To gain information on both particle size and particle distribution in histological sections, laser ablation and single particle inductively coupled plasma-mass spectrometry (LA-spICP-MS) was used in combination with a liquid calibration of dissolved metal standards via a pneumatic nebulizer. In the first step, the particle size distribution of Ag NPs embedded in matrix-matched gelatine standards introduced via LA was compared with that of Ag NPs in a suspension and nebulizer-based ICP-MS. The data show that the particles remained intact by the ablation process as confirmed by transmission electron microscopy. Moreover, the optimized method was applied to CeO2 NPs that are highly relevant for (eco-)toxicological research but, unlike Ag NPs, are multi-shaped and have a broad particle size distribution. Upon analyzing the particle size distribution of CeO2 NPs in cryosections of rat spleen, CeO2 NPs were found to remain unchanged in size over 3 h, 3 d, and 3 weeks post-intratracheal instillation, with the fraction of smaller particles reaching the spleen first. Overall, LA-spICP-MS combined with a calibration based on dissolved metal standards is a powerful tool to simultaneously localize and size NPs in histological sections in the absence of particle standards.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Nanopartículas , Ratos , Animais , Espectrometria de Massas/métodos , Calibragem , Análise Espectral , Nanopartículas/química , Tamanho da Partícula , Nanopartículas Metálicas/química
2.
Chem Res Toxicol ; 35(6): 981-991, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35583351

RESUMO

Due to the increasing use and production of CeO2 nanoparticles (NPs), the likelihood of exposure especially via the air rapidly grows. However, the uptake of CeO2 NPs via the lung and the resulting distribution into various cell types of remote organs are not well understood because classical analytical methods provide limited spatial information. In this study, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was combined with immunohistochemical (IHC) staining with lanthanide-labeled antibodies to investigate the distribution of intratracheally instilled CeO2 NPs from the rat lung to lymph nodes, spleen, and liver after 3 h, 3 days, and 21 days. We selected regions of interest after fast imaging using LA-ICP-MS in low-resolution mode and conducted high-resolution LA-ICP-MS in combination with IHC for cellular localization. The lanthanide labeling, which was largely congruent with conventional fluorescent labeling, allowed us to calculate the association rates of Ce to specific cell types. Major portions of Ce were found to be associated with phagocytic cells in the lung, lymph nodes, spleen, and liver. In the lung, almost 94% of the Ce was co-localized with CD68-positive alveolar macrophages after 21 days. Ce was also detected in the lymph nodes outside macrophages 3 h post instillation but shifted to macrophage-associated locations. In the liver, Ce accumulations associated with Kupffer cells (CD163-positive) were found. Ce-containing populations of metallophilic and marginal zone macrophages (both CD169-positive) as well as red pulp macrophages (CD68-positive) were identified as major targets in the spleen. Overall, high-resolution LA-ICP-MS analysis in combination with IHC staining with lanthanide-labeled antibodies is a suitable tool to quantify and localize Ce associated with specific cell types and to estimate their particle burden under in vivo conditions.


Assuntos
Elementos da Série dos Lantanídeos , Terapia a Laser , Nanopartículas , Animais , Macrófagos , Espectrometria de Massas/métodos , Ratos , Coloração e Rotulagem
3.
Regul Toxicol Pharmacol ; 124: 104988, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224799

RESUMO

Here, we present a non-animal testing battery to identify PSLT (poorly soluble, low toxicity) substances based on their solubility in phagolysosomal lung fluid simulant, surface reactivity and effects on alveolar macrophages in vitro. This is exemplified by eleven organic pigments belonging to five chemical classes that cover a significant share of the European market. Three of the pigments were tested as both, nanoform and non-nanoform. The results obtained in this integrated non-animal testing battery qualified two pigments as non PSLT, one pigment as poorly soluble and eight pigments as poorly soluble and low toxicity in vitro. The low toxic potency of the eight PSLT and the one poorly soluble pigment was corroborated by short-term inhalation studies with rats. These pigments did not elicit apparent toxic effects at 10 mg/m3 (systemic and in the respiratory tract). One of the pigments, Diarylide Pigment Yellow 83 transparent, however, caused minimal infiltration of neutrophils; hence its low toxicity is ambiguous and needs further verification or falsification. The present test battery provides an opportunity to identify PSLT-properties of test substances to prioritise particles for further development. Thus, it can help to reduce animal testing and steer product development towards safe applications.


Assuntos
Alternativas aos Testes com Animais/métodos , Corantes/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Administração por Inalação , Animais , Linhagem Celular , Corantes/química , Masculino , Tamanho da Partícula , Ratos , Solubilidade , Testes de Toxicidade Subaguda/métodos
4.
Chem Res Toxicol ; 33(5): 1250-1255, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32286059

RESUMO

To better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-µXRF) with high spatial resolution of 3 × 3 µm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-µXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-µXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by a similar uptake in cultured alveolar macrophages. Advantages and limitations of the different strategies for measuring nanoparticle uptake at the single cell level are discussed.


Assuntos
Macrófagos/metabolismo , Nanopartículas Metálicas/química , Prata/metabolismo , Animais , Linhagem Celular , Macrófagos/química , Espectrometria de Massas , Tamanho da Partícula , Ratos , Prata/química , Espectrometria por Raios X , Síncrotrons
5.
Part Fibre Toxicol ; 15(1): 31, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012173

RESUMO

BACKGROUND: The well-known inflammatory and fibrogenic changes of the lung upon crystalline silica are accompanied by early changes of the phospholipid composition (PLC) as detected in broncho-alveolar lavage fluid (BALF). Amorphous silica nanoparticles (NPs) evoke transient lung inflammation, but their effect on PLC is unknown. Here, we compared effects of unmodified and phosphonated amorphous silica NP and describe, for the first time, local changes of the PLC with innovative bioimaging tools. METHODS: Unmodified (SiO2-n), 3-(trihydroxysilyl) propyl methylphosphonate coated SiO2-n (SiO2-p) as well as a fluorescent surrogate of SiO2-n (SiO2-FITC) nanoparticles were used in this study. In vitro toxicity was tested with NR8383 alveolar macrophages. Rats were intratracheally instilled with SiO2-n, SiO2-p, or SiO2-FITC, and effects on lungs were analyzed after 3 days. BALF from the right lung was analyzed for inflammatory markers. Cryo-sections of the left lung were subjected to fluorescence microscopy and PLC analyses by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MS), Fourier transform infrared microspectroscopy (FT-IR), and tandem mass spectrometry (MS/MS) experiments. RESULTS: Compared to SiO2-p, SiO2-n NPs were more cytotoxic to macrophages in vitro and more inflammatory in the rat lung, as reflected by increased concentration of neutrophils and protein in BALF. Fluorescence microscopy revealed a typical patchy distribution of SiO2-FITC located within the lung parenchyma and alveolar macrophages. Superimposable to this particle distribution, SiO2-FITC elicited local increases of phosphatidylglycerol (PG) and phosphatidylinositol (PI), whereas phoshatidylserine (PS) and signals from triacylgyceride (TAG) were decreased in the same areas. No such changes were found in lungs treated with SiO2-p or particle-free instillation fluid. CONCLUSIONS: Phosphonate coating mitigates effects of silica NP in the lung and abolishes their locally induced changes in PLC pattern. Bioimaging methods based on MALDI-MS may become a useful tool to investigate the mode of action of NPs in tissues.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Organofosfonatos/química , Fosfolipídeos/análise , Pneumonia/induzido quimicamente , Dióxido de Silício/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Feminino , Exposição por Inalação , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Microscopia de Fluorescência , Nanopartículas/química , Pneumonia/diagnóstico por imagem , Pneumonia/imunologia , Ratos Wistar , Dióxido de Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
6.
Analyst ; 142(14): 2631-2639, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28608905

RESUMO

The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO3- (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN-, m/z 26.00) and phosphate based signals (PO3-, m/z 78.96) originating from the tissue material could be related to the SiO3- lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.


Assuntos
Pulmão/diagnóstico por imagem , Microscopia de Fluorescência , Nanopartículas/análise , Dióxido de Silício/análise , Espectrometria de Massa de Íon Secundário , Animais , Feminino , Ratos , Ratos Wistar
7.
J Nanobiotechnology ; 14: 16, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944705

RESUMO

BACKGROUND: Most in vitro studies investigating nanomaterial pulmonary toxicity poorly correlate to in vivo inhalation studies. Alveolar macrophages (AMs) play an outstanding role during inhalation exposure since they effectively clear the alveoli from particles. This study addresses the applicability of an in vitro alveolar macrophage assay to distinguish biologically active from passive nanomaterials. METHODS: Rat NR8383 alveolar macrophages were exposed to 18 inorganic nanomaterials, covering AlOOH, BaSO4, CeO2, Fe2O3, TiO2, ZrO2, and ZnO NMs, amorphous SiO2 and graphite nanoplatelets, and two nanosized organic pigments. ZrO2 and amorphous SiO2 were tested without and with surface functionalization. Non-nanosized quartz DQ12 and corundum were used as positive and negative controls, respectively. The test materials were incubated with the cells in protein-free culture medium. Lactate dehydrogenase, glucuronidase, and tumour necrosis factor alpha were assessed after 16 h. In parallel, H2O2 was assessed after 1.5 h. Using the no-observed-adverse-effect concentrations (NOAECs) from available rat short-term inhalation studies (STIS), the test materials were categorized as active (NOAEC < 10 mg/m(3)) or passive. RESULTS: In vitro data reflected the STIS categorization if a particle surface area-based threshold of <6000 mm(2)/mL was used to determine the biological relevance of the lowest observed significant in vitro effects. Significant effects that were recorded above this threshold were assessed as resulting from test material-unspecific cellular 'overload'. Test materials were assessed as active if ≥2 of the 4 in vitro parameters undercut this threshold. They were assessed as passive if 0 or 1 parameter was altered. An overall assay accuracy of 95 % was achieved. CONCLUSIONS: The in vitro NR8383 alveolar macrophage assay allows distinguishing active from passive nanomaterials. Thereby, it allows determining whether in vivo short-term inhalation testing is necessary for hazard assessment. Results may also be used to group nanomaterials by biological activity. Further work should aim at validating the assay.


Assuntos
Exposição por Inalação/efeitos adversos , Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Nanoestruturas/efeitos adversos , Animais , Linhagem Celular , Compostos Férricos/efeitos adversos , Grafite/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Pulmão/efeitos dos fármacos , Tamanho da Partícula , Ratos , Dióxido de Silício/efeitos adversos , Titânio/efeitos adversos
8.
Analyst ; 140(15): 5120-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26087290

RESUMO

ZrO2 nanoparticles are frequently used in composite materials such as dental fillers from where they may be released and inhaled upon polishing and grinding. Since the overall distribution of ZrO2 NP inside the lung parenchyma can hardly be observed by routine histology, here a labeling with a fluorphore was used secondary to the adsorption of serum proteins. Particles were then intratracheally instilled into rat lungs. After 3 h fluorescent structures consisted of agglomerates scattered throughout the lung parenchyma, which were mainly concentrated in alveolar macrophages after 3 d. A detection method based on Raman microspectroscopy was established to investigate the chemical composition of those fluorescent structures in detail. Raman measurements were arranged such that no spectral interference with the protein-bound fluorescence label was evident. Applying chemometrical methods, Raman signals of the ZrO2 nanomaterial were co-localized with the fluorescence label, indicating the stability of the nanomaterial-protein-dye complex inside the rat lung. The combination of Raman microspectroscopy and adsorptive fluorescence labeling may, therefore, become a useful tool for studying the localization of protein-coated nanomaterials in cells and tissues.


Assuntos
Pulmão/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Zircônio/metabolismo , Zircônio/farmacocinética , Animais , Feminino , Fluorescência , Pulmão/ultraestrutura , Microscopia de Fluorescência , Nanopartículas/análise , Nanopartículas/ultraestrutura , Ratos , Ratos Wistar , Análise Espectral Raman
9.
Part Fibre Toxicol ; 12: 36, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26525058

RESUMO

BACKGROUND: Oxidative stress, a commonly used paradigm to explain nanoparticle (NP)-induced toxicity, results from an imbalance between reactive oxygen species (ROS) generation and detoxification. As one consequence, protein carbonyl levels may become enhanced. Thus, the qualitative and quantitative description of protein carbonylation may be used to characterize how biological systems respond to oxidative stress induced by NPs. METHODS: We investigated a representative panel of 24 NPs including functionalized amorphous silica (6), zirconium dioxide (4), silver (4), titanium dioxide (3), zinc oxide (2), multiwalled carbon nanotubes (3), barium sulfate and boehmite. Surface reactivities of all NPs were studied in a cell-free system by electron spin resonance (ESR). NRK-52E cells were treated with all NPs, analyzed for viability (WST-1 assay) and intracellular ROS production (DCFDA assay). Carbonylated proteins were assessed by 1D and/or 2D immunoblotting and identified by matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF/TOF). In parallel, tissue homogenates from rat lungs intratracheally instilled with silver NPs were studied. RESULTS: Eleven NPs induced elevated levels of carbonylated proteins. This was in good agreement with the surface reactivity of the NPs as obtained by ESR and the reduction in cell viability as assessed by WST-1 assay. By contrast, results obtained by DCFDA assay were deviating. Each NP induced an individual pattern of protein carbonyls on 2D immunoblots. Affected proteins comprised cytoskeletal components, proteins being involved in stress response, or cytoplasmic enzymes of central metabolic pathways such as glycolysis and gluconeogenesis. Furthermore, induction of carbonyls upon silver NP treatment was also verified in rat lung tissue homogenates. CONCLUSIONS: Analysis of protein carbonylation is a versatile and sensitive method to describe NP-induced oxidative stress and, therefore, can be used to identify NPs of concern. Furthermore, detailed information about compromised proteins may aid in classifying NPs according to their mode of action.


Assuntos
Cetonas/metabolismo , Nanopartículas/toxicidade , Proteômica , Animais , Análise por Conglomerados , Pulmão/metabolismo , Análise de Componente Principal , Ratos
10.
Front Public Health ; 10: 902799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801234

RESUMO

Synthetic amorphous silica (SAS) is industrially relevant material whose bioactivity in vitro is strongly diminished, for example, by protein binding to the particle surface. Here, we investigated the in vitro bioactivity of fourteen SAS (pyrogenic, precipitated, or colloidal), nine of which were surface-treated with organosilanes, using alveolar macrophages as a highly sensitive test system. Dispersion of the hydrophobic SAS required pre-wetting with ethanol and extensive ultrasonic treatment in the presence of 0.05% BSA (Protocol 1). Hydrophilic SAS was suspended by moderate ultrasonic treatment (Protocol 2) and also by Protocol 1. The suspensions were administered to NR8383 alveolar macrophages under serum-free conditions for 16 h, and the release of LDH, GLU, H2O2, and TNFα was measured in cell culture supernatants. While seven surface-treated hydrophobic SAS exhibited virtually no bioactivity, two materials (AEROSIL® R 504 and AEROSIL® R 816) had minimal effects on NR8383 cells. In contrast, non-treated SAS elicited considerable increases in LDH, GLU, and TNFα, while the release of H2O2 was low except for CAB-O-SIL® S17D Fumed Silica. Dispersing hydrophilic SAS with Protocol 1 gradually reduced the bioactivity but did not abolish it. The results show that hydrophobic coating reagents, which bind covalently to the SAS surface, abrogate the bioactivity of SAS even under serum-free in vitro conditions. The results may have implications for the hazard assessment of hydrophobic surface-treated SAS in the lung.


Assuntos
Compostos de Organossilício , Dióxido de Silício , Peróxido de Hidrogênio/farmacologia , Indicadores e Reagentes , Tamanho da Partícula , Dióxido de Silício/química , Fator de Necrose Tumoral alfa
11.
Drug Deliv Transl Res ; 12(9): 2243-2258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612707

RESUMO

Due to their unique chemical and physical properties, nanobiomaterials (NBMs) are extensively studied for applications in medicine and drug delivery. Despite these exciting properties, their small sizes also make them susceptible to toxicity. Whilst nanomaterial immunotoxicity and cytotoxicity are studied in great depth, there is still limited data on their potential genotoxicity or ability to cause DNA damage. In the past years, new medical device regulations, which came into place in 2020, were developed, which require the assessment of long-term NBM exposure; therefore, in recent years, increased attention is being paid to genotoxicity screening of these materials. In this article, and through an interlaboratory comparison (ILC) study conducted within the Horizon 2020 REFINE project, we assess five different NBM formulations, each with different uses, namely, a bio-persistent gold nanoparticle (AuNP), an IR-780 dye-loaded liposome which is used in deep tissue imaging (LipImage™815), an unloaded PACA polymeric nanoparticle used as a drug delivery system (PACA), and two loaded PACA NBMs, i.e. the cabazitaxel drug-loaded PACA (CBZ-PACA) and the NR668 dye-loaded PACA (NR668 PACA) for their potential to cause DNA strand breaks using the alkaline comet assay and discuss the current state of genotoxicity testing for nanomaterials. We have found through our interlaboratory comparison that the alkaline comet assay can be suitably applied to the pre-clinical assessment of NBMs, as a reproducible and repeatable methodology for assessing NBM-induced DNA damage. Workflow for assessing the applicability of the alkaline comet assay to determine nanobiomaterial (NBM)-induced DNA strand breaks, through an interlaboratory comparison study (ILC).


Assuntos
Ouro , Nanopartículas Metálicas , Ensaio Cometa/métodos , DNA , Dano ao DNA , Nanopartículas Metálicas/toxicidade
12.
Drug Deliv Transl Res ; 12(9): 2075-2088, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35182369

RESUMO

The detection of biomedical organic nanocarriers in cells and tissues is still an experimental challenge. Here we developed an imaging strategy for the label-free detection of poly (ethylbutyl cyanoacrylate) (PEBCA) particles. Experiments were carried out with phagocytic NR8383 macrophages exposed to non-toxic and non-activating concentrations of fluorescent (PEBCA NR668 and PEBCA NR668/IR), non-fluorescent (PEBCA), and cabazitaxel-loaded PEBCA particles (PEBCA CBZ). Exposure to PEBCA NR668 revealed an inhomogeneous particle uptake similar to what was obtained with the free modified Nile Red dye (NR668). In order to successfully identify the PEBCA-loaded cells under label-free conditions, we developed an imaging strategy based on enhanced darkfield microscopy (DFM), followed by confocal Raman microscopy (CRM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nitrile groups of the PEBCA matrix and PEBCA ions were used as suitable analytes for CRM and ToF-SIMS, respectively. Masses found with ToF-SIMS were further confirmed by Orbitrap-SIMS. The combined approach allowed to image small (< 1 µm) PEBCA-containing phagolysosomes, which were identified as PEBCA-containing compartments in NR8383 cells by electron microscopy. The combination of DFM, CRM, and ToF-SIMS is a promising strategy for the label-free detection of PEBCA particles.


Assuntos
Cianoacrilatos , Espectrometria de Massa de Íon Secundário , Macrófagos , Microscopia Confocal , Espectrometria de Massa de Íon Secundário/métodos
13.
Nanoscale Adv ; 3(13): 3881-3893, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133012

RESUMO

Aerogels contribute to an increasing number of novel applications due to many unique properties, such as high porosity and low density. They outperform most other insulation materials, and some are also useful as carriers in food or pharma applications. Aerogels are not nanomaterials by the REACH definition but retain properties of nanoscale structures. Here we applied a testing strategy in three tiers. In Tier 1, we examined a panel of 19 aerogels (functionalized chitosan, alginate, pyrolyzed carbon, silicate, cellulose, polyurethane) for their biosolubility, and oxidative potential. Biosolubility was very limited except for some alginate and silicate aerogels. Oxidative potential, as by the ferric reduction ability of human serum (FRAS), was very low except for one chitosan and pyrolyzed carbon, both of which were <10% of the positive control Mn2O3. Five aerogels were further subjected to the Tier 2 alveolar macrophage assay, which revealed no in vitro cytotoxicity, except for silicate and polyurethane that induced increases in tumor necrosis factor α. Insufficiently similar aerogels were excluded from a candidate group, and a worst case identified. In the Tier 3 in vivo instillation, polyurethane (0.3 to 2.4 mg) elicited dose-dependent but reversible enzyme changes in lung lavage fluid on day 3, but no significant inflammatory effects. Overall, the results show a very low inherent toxicity of aerogels and support a categorization based on similarities in Tier 1 and Tier 2. This exemplifies how nanosafety concepts and methods developed on particles can be applied to specific concerns on advanced materials that contain or release nanostructures.

14.
Nanomaterials (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802450

RESUMO

Various cell types are compromised by synthetic amorphous silica (SAS) if they are exposed to SAS under protein-free conditions in vitro. Addition of serum protein can mitigate most SAS effects, but it is not clear whether this is solely caused by protein corona formation and/or altered particle uptake. Because sensitive and reliable mass spectrometric measurements of SiO2 NP are cumbersome, quantitative uptake studies of SAS at the cellular level are largely missing. In this study, we combined the comparison of SAS effects on alveolar macrophages in the presence and absence of foetal calf serum with mass spectrometric measurement of 28Si in alkaline cell lysates. Effects on the release of lactate dehydrogenase, glucuronidase, TNFα and H2O2 of precipitated (SIPERNAT® 50, SIPERNAT® 160) and fumed SAS (AEROSIL® OX50, AEROSIL® 380 F) were lowered close to control level by foetal calf serum (FCS) added to the medium. Using a quantitative high resolution ICP-MS measurement combined with electron microscopy, we found that FCS reduced the uptake of particle mass by 9.9% (SIPERNAT® 50) up to 83.8% (AEROSIL® OX50). Additionally, larger particle agglomerates were less frequent in cells in the presence of FCS. Plotting values for lactate dehydrogenase (LDH), glucuronidase (GLU) or tumour necrosis factor alpha (TNFα) against the mean cellular dose showed the reduction of bioactivity with a particle sedimentation bias. As a whole, the mitigating effects of FCS on precipitated and fumed SAS on alveolar macrophages are caused by a reduction of bioactivity and by a lowered internalization, and both effects occur in a particle specific manner. The method to quantify nanosized SiO2 in cells is a valuable tool for future in vitro studies.

15.
Metallomics ; 13(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33979446

RESUMO

In a dual approach, laser ablation-inductively coupled plasma-mass spectrometry was applied to investigate spleen samples of rats after intratracheal instillation of polyvinylpyrrolidone-coated gold nanoparticles. First, spatially resolved imaging analysis was deployed to investigate gold translocation from the lungs to the spleen and to investigate the distribution pattern of gold in the spleen parenchyma itself. Using the same instrumental setup, laser ablation-inductively coupled plasma-mass spectrometry in single particle mode was applied to determine the species of translocated gold. Single particle analysis allows the determination of particle size distributions and therefore to distinguish between ionic species, intact nanoparticles, and agglomerates. A translocation of instilled gold from the lungs to the spleen was demonstrated for gold nanoparticles of 30 and 50 nm diameter. Furthermore single particle analysis revealed the translocation of intact gold nanoparticles in a non-agglomerated state.


Assuntos
Ouro/química , Terapia a Laser/métodos , Espectrometria de Massas/métodos , Nanopartículas Metálicas/administração & dosagem , Baço/metabolismo , Traqueia/efeitos dos fármacos , Animais , Feminino , Injeção Intratimpânica , Nanopartículas Metálicas/química , Tamanho da Partícula , Ratos , Ratos Wistar , Análise Espacial , Baço/efeitos dos fármacos
16.
Nanomaterials (Basel) ; 10(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991556

RESUMO

Kaolin and bentonite (nanoclay NM-600) are nanostructured aluminosilicates that share a similar chemical composition, platelet-like morphology, and high binding capacity for biomolecules. To investigate if these material-based criteria allow for a common grouping, we prepared particle suspensions of kaolin and bentonite with a similar hydrodynamic diameter and administered them to NR8383 alveolar macrophages in vitro and also to a rat lung using quartz DQ12 as a reference material. Bentonite was far more bioactive in vitro, indicated by a lower threshold for the release of enzymes, tumor necrosis factor α, and H2O2. In addition, in the lung, the early effects of bentonite exceeded those of kaolin and even those of quartz, due to strongly increased numbers of inflammatory cells, and elevated concentrations of total protein and fibronectin within the bronchoalveolar lavage fluid. The pro-inflammatory effects of bentonite decreased over time, although assemblies of particle-laden alveolar macrophages (CD68 positive), numerous type-2 epithelial cells (immunopositive for pro-surfactant protein C), and hypertrophic lung epithelia persisted until day 21. At this point in time, kaolin-treated lungs were completely recovered, whereas quartz DQ12 had induced a progressive inflammation. We conclude that bentonite is far more bioactive than equally sized kaolin. This argues against a common grouping of aluminosilicates, previously suggested for different kaolin qualities.

17.
Brain Res ; 1206: 33-43, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18343356

RESUMO

Recent experiments suggest that activation of the Ras-MAP kinase pathway at the mid-hindbrain boundary (MHB) induces cerebellar development, whereas tectal development occurs in the absence of Ras-MAP kinase activity. To test this model we have stimulated or inhibited Ras-MAP kinase signaling in chick embryos through targeted misexpression of a constitutive active (Ras(V12)) or dominant negative (Ras(N17)) form of Ras. The consequence of these manipulations on the expression of several genes that are expressed in distinct patterns at or around the MHB organizer, including En1, Pax2, Pax3, Pax5, Wnt1, Meis2, and ephrin-A2, -A5, and -B1, was assessed. Extending previous findings we show that inhibition of Ras-MAP kinase signaling differently affects Pax3 expression in different regions of the mid-hindbrain territory, inhibiting its expression in the midbrain but inducing it in the MHB region. Expression of the midbrain specific marker gene Meis2 was not affected by Ras(N17) at first but later upregulated concomitantly with the morphological transformation of hindbrain to midbrain. In addition, we show that different dosages of Ras-MAP kinase activity are required for transcriptional activation of Wnt1 and En1 at the MHB. Collectively, these results validate and extend previous findings on the molecular changes associated with Fgf8 loss-of-function or gain-of-function phenotypes at the MHB, demonstrate that gene expression at the MHB is regulated by Ras-MAP kinase signaling in a spatially and temporally distinct manner and provide evidence for a dosage dependent function of Fgf8 signaling at the MHB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mesencéfalo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Rombencéfalo/metabolismo , Proteínas ras/metabolismo , Animais , Embrião de Galinha , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Dosagem de Genes , Sistema de Sinalização das MAP Quinases/genética , Mesencéfalo/embriologia , Organogênese/genética , Organogênese/fisiologia , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rombencéfalo/embriologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas ras/genética
18.
Nanomaterials (Basel) ; 8(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049943

RESUMO

Amorphous silica nanoparticles comprise a class of widely used industrial nanomaterials, which may elicit acute inflammation in the lung. These materials have a large specific surface to which components of the pulmonary micro-milieu can bind. To conduct appropriate binding studies, paramagnetic Fe2O3/SiO2 core/shell nanoparticles (Fe-Si-NP) may be used as an easy-to-isolate silica surrogate, if several prerequisites are fulfilled. To this end, we investigated the distribution of Fe, Si, protein and phosphatidylcholine (PC) by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) in cryo-sections from the rat lungs to which Fe-Si-NP had been administered for 30 min. Regions-of-interest were identified and analyzed with incident light and enhanced dark-field microscopy (DFM). Fe-Si-NP particles (primary particle size by electron microscopy: 10⁻20 nm; aggregate size by tracking analysis: 190 ± 20 nm) and agglomerates thereof were mainly attached to alveolar walls and only marginally internalized by cells such as alveolar macrophages. The localization of Fe-Si-NP by DFM was confirmed by ToF-SIMS signals from both, Fe and Si ions. With respect to an optimized signal-to-noise ratio, Fe⁺, Si⁺, CH4N⁺ and the PC head group (C5H15NO4P⁺) were the most versatile ions to detect iron, silica, protein, and PC, respectively. Largely congruent Fe⁺ and Si⁺ signals demonstrated that the silica coating of Fe-Si-NP remained stable under the conditions of the lung. PC, as a major lipid of the pulmonary surfactant, was colocalized with the protein signal alongside alveolar septa, but was not detected on Fe-Si-NP, suggesting that silica nanoparticles do not adsorb lipids of the lung surfactant under native conditions. The study shows that ToF-SIMS is a valuable technique with adequate spatial resolution to analyze nanoparticles together with organic molecules in the lung. The paramagnetic Fe-Si-NP appear well suited to study the binding of proteins to silica nanomaterials in the lung.

19.
Nanomaterials (Basel) ; 8(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534009

RESUMO

In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, ß-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration-based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as "active." This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials.

20.
Nanomaterials (Basel) ; 8(1)2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342982

RESUMO

The increasing use of nanoparticles (NP) in commercial products requires elaborated techniques to detect NP in the tissue of exposed organisms. However, due to the low amount of material, the detection and exact localization of NP within tissue sections is demanding. In this respect, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Ion Beam Microscopy (IBM) are promising techniques, because they both offer sub-micron lateral resolutions along with high sensitivities. Here, we compare the performance of the non-material-consumptive IBM and material-consumptive ToF-SIMS for the detection of ZrO2 NP (primary size 9-10 nm) in rat lung tissue. Unfixed or methanol-fixed air-dried cryo-sections were subjected to IBM using proton beam scanning or to three-dimensional ToF-SIMS (3D ToF-SIMS) using either oxygen or argon gas cluster ion beams for complete sample sputtering. Some sample sites were analyzed first by IBM and subsequently by 3D ToF-SIMS, to compare results from exactly the same site. Both techniques revealed that ZrO2 NP particles occurred mostly agglomerated in phagocytic cells with only small quantities being associated to the lung epithelium, with Zr, S, and P colocalized within the same biological structures. However, while IBM provided quantitative information on element distribution, 3D ToF-SIMS delivered a higher lateral resolution and a lower limit of detection under these conditions. We, therefore, conclude that 3D ToF-SIMS, although not yet a quantitative technique, is a highly valuable tool for the detection of NP in biological tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA