Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Dent ; 32(2): 55-60, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31094138

RESUMO

PURPOSE: To examine the influence of different bulk and block composite and flowable and glass-ionomer material combinations in a multi-layer technique and in a unique technique, in deep Class I dental restorations. METHODS: 3D CAD of the sound tooth were built-up from a CT scan dataset using reverse engineering techniques. Four restored tooth models with Class I cavity were virtually created from a CAD model of a sound tooth. 3D-finite element (FE) models were created and analyzed starting from CAD models. Model A with flowable resin composite restoring the lower layer and bulk-fill resin composite restoring the upper layer, model B with glass-ionomer cement (GIC) restoring the lower layer and bulk-fill resin composite restoring the upper layer, model C with block composite as the only restoring material and model D with bulk-fill resin composite as the only restoring material. Polymerization shrinkage was simulated with the thermal expansion approach. Physiologic masticatory loads were applied in combination with shrinkage effect. Nodal displacements on the lower surfaces of FE models were constrained in all directions. Static linear analyses were carried out. The maximum normal stress criterion was used to assess the influence of each factor. RESULTS: Considering direct restoring techniques, models A, B and D exhibited a high stress gradient at the tooth/restorative material interface. Models A and D showed a similar stress trend along the cavity wall where a similar stress trend was recorded in the dentin and enamel. Model B showed a similar stress trend along enamel/restoration interface but a very low stress gradient along the dentin/restoration interface. Model C with a restoring block composite material showed a better response, with the lowest stress gradient at the dentin, filling block composite and enamel sides. CLINICAL SIGNIFICANCE: Bulk resin-based composite materials applied in a multilayer technique to deep and large Class I cavities produced adverse stress distributions versus block resin composite. Polymerization shrinkage and loading determined high stress levels in deep Class I cavities with bulk multi-layer restorations, while its impact on adhesion in block composite restorations was insignificant.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Preparo da Cavidade Dentária , Análise do Estresse Dentário , Análise de Elementos Finitos , Teste de Materiais , Polimerização , Estresse Mecânico
2.
Nano Lett ; 15(3): 1517-25, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25699511

RESUMO

The initial conditions for morphogenesis trigger a cascade of events that ultimately dictate structure and functions of tissues and organs. Here we report that surface nanopatterning can control the initial assembly of focal adhesions, hence guiding human mesenchymal stem cells (hMSCs) through the process of self-organization and differentiation. This process self-sustains, leading to the development of macroscopic tissues with molecular profiles and microarchitecture reminiscent of embryonic tendons. Therefore, material surfaces can be in principle engineered to set off the hMSC program toward tissuegenesis in a deterministic manner by providing adequate sets of initial environmental conditions.


Assuntos
Adesões Focais/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Nanoestruturas/química , Tendões/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Teste de Materiais , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Tendões/citologia
3.
Biotechnol Bioeng ; 111(11): 2303-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24888215

RESUMO

In "situ" tissue engineering is a promising approach in regenerative medicine, envisaging to potentiate the physiological tissue repair processes by recruiting the host's own cellular progenitors at the lesion site by means of bioactive materials. Despite numerous works focused the attention in characterizing novel chemoattractant molecules, only few studied the optimal way to present signal in the microenvironment, in order to recruit cells more effectively. In this work, we have analyzed the effects of gradients of stromal derived factor-1 (SDF-1) on the migratory behavior of human mesenchymal stem cells (MSCs). We have characterized the expression of the chemokine-associated receptor, CXCR4, using cytofluorimetric and real-time PCR analyses. Gradients of SDF-1 were created in 3D collagen gels in a chemotaxis chamber. Migration parameters were evaluated using different chemoattractant concentrations. Our results show that cell motion is strongly affected by the spatio-temporal features of SDF-1 gradients. In particular, we demonstrated that the presence of SDF-1 not only influences cell motility but alters the cell state in terms of SDF-1 receptor expression and productions, thus modifying the way cells perceive the signal itself. Our observations highlight the importance of a correct stimulation of MSCs by means of SDF-1 in order to implement on effective cell recruitment. Our results could be useful for the creation of a "cell instructive material" that is capable to communicate with the cells and control and direct tissue regeneration. Biotechnol. Bioeng. 2014;111: 2303-2316. © 2014 Wiley Periodicals, Inc.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Quimiotaxia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/biossíntese
4.
Biomacromolecules ; 15(9): 3321-7, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25054655

RESUMO

Contaminants in water streams, in the form of oily/organic phases or nanoparticles, affect a large variety of activities, from laboratory practice up to environmental systems. To date, a large number of materials for the absorption and retention of these pollutants have been developed. Such materials, however, rarely conjugate high oil uptake, nanoparticle sequestration, biodegradability, and cost effectiveness simultaneously. In this work, we exploited the structural properties of dermal collagen networks and simple chemical manipulations to fabricate an original material that proved effective in separating water from organic and nanoparticulated contaminants. Our material is reusable, biodegradable, safe, and cost-effective and shows a high absorptive capacity of a large variety of organic compounds; it is also able to capture metallic nanoparticles. These features allow our material to effectively separate water from oily/nanoparticulate phases, thus making it an appropriate absorber for chemical processes and environmental protection.


Assuntos
Absorção Fisico-Química , Plásticos Biodegradáveis/química , Nanopartículas Metálicas/química , Óleos/química , Poluentes da Água/química , Purificação da Água/métodos , Animais , Ovinos
5.
Curr Opin Cell Biol ; 86: 102311, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176349

RESUMO

Tissue-resident myeloid cells sense and transduce mechanical signals such as stiffness, stretch and compression. In the past two years, our understanding of the mechanosensitive signalling pathways in myeloid cells has significantly expanded. Moreover, it is increasingly clear which mechanical signals induce myeloid cells towards a pro- or anti-inflammatory phenotype. This is especially relevant in the context of altered matrix mechanics in immune-related pathologies or in the response to implanted biomaterials. A detailed understanding of myeloid cell mechanosensing may eventually lead to more effective cell-based immunotherapies for cancer, the development of mechanically inspired therapies to target fibrosis, and the engineering of safer implants. This review covers these recent advances in the emerging field of mechanoimmunology of myeloid cells.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/terapia , Biofísica , Células Mieloides , Mecanotransdução Celular/fisiologia
6.
J Biol Chem ; 287(36): 30170-80, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22787154

RESUMO

The Y-box binding protein 1 (YB-1) belongs to the cold-shock domain protein superfamily, one of the most evolutionarily conserved nucleic acid-binding proteins currently known. YB-1 performs a wide variety of cellular functions, including transcriptional and translational regulation, DNA repair, drug resistance, and stress responses to extracellular signals. Inasmuch as the level of YB-1 drastically increases in tumor cells, this protein is considered to be one of the most indicative markers of malignant tumors. Here, we present evidence that ΔNp63α, the predominant p63 protein isoform in squamous epithelia and YB-1, can physically interact. Into the nucleus, ΔNp63α and YB-1 cooperate in PI3KCA gene promoter activation. Moreover, ΔNp63α promotes YB-1 nuclear accumulation thereby reducing the amount of YB-1 bound to its target transcripts such as that encoding the SNAIL1 protein. Accordingly, ΔNp63α enforced expression was associated with a reduction of the level of SNAIL1, a potent inducer of epithelial to mesenchymal transition. Furthermore, ΔNp63α depletion causes morphological change and enhanced formation of actin stress fibers in squamous cancer cells. Mechanistic studies indicate that ΔNp63α affects cell movement and can reverse the increase of cell motility induced by YB-1 overexpression. These data thus suggest that ΔNp63α provides inhibitory signals for cell motility. Deficiency of ΔNp63α gene expression promotes cell mobilization, at least partially, through a YB-1-dependent mechanism.


Assuntos
Movimento Celular , Núcleo Celular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Sobrevivência Celular/genética , Humanos , Isoformas de Proteínas , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 de Ligação a Y-Box/genética
7.
Appl Opt ; 52(7): 1453-60, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23458798

RESUMO

We propose a denoising method for digital holography mod 2π wrapped phase map by using an adaptation of the SPArsity DEnoising of Digital Holograms (SPADEDH) algorithm. SPADEDH is a l(1) minimization algorithm able to suppress the noise components on digital holograms without any prior knowledge or estimation about the statistics of noise. We test our algorithm with either general numerical simulated wrapped phase, quantifying the performance with different efficiency parameters and comparing it with two popular denoising strategies, i.e., median and Gaussian filters, and specific experimental tests, by focusing our attention on long-sequence wrapped quantitative phase maps (QPMs) of in vitro cells, which aim to have uncorrupted QPMs. In addition, we prove that the proposed algorithm can be used as a helper for the typical local phase unwrapping algorithms.


Assuntos
Holografia/instrumentação , Holografia/métodos , Microscopia/métodos , Algoritmos , Artefatos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Movimento Celular , Simulação por Computador , Técnicas Citológicas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Distribuição Normal
8.
Dev Cell ; 58(24): 2896-2913.e6, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38056454

RESUMO

Skeletal muscle repair relies on heterogeneous populations of satellite cells (SCs). The mechanisms that regulate SC homeostasis and state transition during activation are currently unknown. Here, we investigated the emerging role of non-genetic micro-heterogeneity, i.e., intrinsic cell-to-cell variability of a population, in this process. We demonstrate that micro-heterogeneity of the membrane protein CRIPTO in mouse-activated SCs (ASCs) identifies metastable cell states that allow a rapid response of the population to environmental changes. Mechanistically, CRIPTO micro-heterogeneity is generated and maintained through a process of intracellular trafficking coupled with active shedding of CRIPTO from the plasma membrane. Irreversible perturbation of CRIPTO micro-heterogeneity affects the balance of proliferation, self-renewal, and myogenic commitment in ASCs, resulting in increased self-renewal in vivo. Our findings demonstrate that CRIPTO micro-heterogeneity regulates the adaptative response of ASCs to microenvironmental changes, providing insights into the role of intrinsic heterogeneity in preserving stem cell population diversity during tissue repair.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Camundongos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco
9.
Opt Express ; 20(27): 28485-93, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263084

RESUMO

Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Holografia/métodos , Imageamento Tridimensional/métodos , Osteossarcoma/patologia , Reconhecimento Automatizado de Padrão/métodos , Linhagem Celular Tumoral , Humanos , Processamento de Sinais Assistido por Computador
10.
Langmuir ; 28(1): 714-21, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22121886

RESUMO

Patterning cell-adhesive molecules on material surfaces provides a powerful tool for controlling and guiding cell locomotion and migration. Here we report fast, reliable, easy to implement methods to fabricate large patterns of proteins on synthetic substrates to control the direction and speed of cells. Two common materials exhibiting very different protein adsorption capacities, namely, polystyrene and Teflon, were functionalized with micrometric stripes of laminin. The protein was noncovalently immobilized onto the surface by following either lithographically controlled wetting (LCW) or micromolding in capillaries (MIMIC). These techniques proved to be sufficiently mild so as not to interfere with the protein adhesion capability. Cells adhered onto the functionalized stripes and remained viable for more than 20 h. During this time frame, cells migrated along the lanes and the dynamics of motion was strongly affected by the substrate surface chemistry and culturing conditions. In particular, enhanced mismatches of cell adhesive properties obtained by the juxtaposition of bare and laminin-functionalized Teflon caused cells to move slowly and their movement to be highly confined. The patterning procedure was also effective at guiding migration on conventional cell culture dishes that were functionalized with laminin patterns, even in the presence of serum proteins, although to a lesser extent compared to that for Teflon. This work demonstrates the possibility of creating well-defined, long-range cellular streams on synthetic substrates by pursuing straightforward functionalizing techniques that can be implemented for a broad class of materials under conventional, long-time cell-culturing conditions. The procedure effectively confines cells to migrate along predefined patterns and can be implemented in different biomedical and biotechnological applications.


Assuntos
Microfluídica , Propriedades de Superfície , Molhabilidade
11.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497421

RESUMO

The extracellular matrix (ECM) is a pericellular network of proteins and other molecules that provides mechanical support to organs and tissues. ECM biophysical properties such as topography, elasticity and porosity strongly influence cell proliferation, differentiation and migration. The cell's perception of the biophysical microenvironment (mechanosensing) leads to altered gene expression or contractility status (mechanotransduction). Mechanosensing and mechanotransduction have profound implications in both tissue homeostasis and cancer. Many solid tumours are surrounded by a dense and aberrant ECM that disturbs normal cell functions and makes certain areas of the tumour inaccessible to therapeutic drugs. Understanding the cell-ECM interplay may therefore lead to novel and more effective therapies. Controllable and reproducible cell culturing systems mimicking the ECM enable detailed investigation of mechanosensing and mechanotransduction pathways. Here, we discuss ECM biomimetic systems. Mainly focusing on collagen, we compare and contrast structural and molecular complexity as well as biophysical properties of simple 2D substrates, 3D fibrillar collagen gels, cell-derived matrices and complex decellularized organs. Finally, we emphasize how the integration of advanced methodologies and computational methods with collagen-based biomimetics will improve the design of novel therapies aimed at targeting the biophysical and mechanical features of the tumour ECM to increase therapy efficacy.

12.
Front Bioeng Biotechnol ; 10: 933410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935479

RESUMO

Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However, conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Current methods to fabricate dynamic platforms usually rely on complex chemical strategies or require specialized apparatuses. Also, with these methods, the integration of dynamic signals acting on different length scales is not straightforward, whereas, in some applications, it might be beneficial to act on both a microscale level, that is, cell shape, and a nanoscale level, that is, cell adhesions. Here, we exploited a confocal laser-based technique on a light-responsive azopolymer displaying micropatterns of adhesive islands. The laser light promotes a directed mass migration and the formation of submicrometric topographic relieves. Also, by changing the surface chemistry, the surfacing topography affects cell spreading and shape. This method enabled us to monitor in a non-invasive manner the dynamic changes in focal adhesions, cytoskeleton structures, and nucleus conformation that followed the changes in the adhesive characteristic of the substrate. Focal adhesions reconfigured after the surfacing of the topography, and the actin filaments reoriented to coalign with the newly formed adhesive island. Changes in cell morphology also affected nucleus shape, chromatin conformation, and cell mechanics with different timescales. The reported strategy can be used to investigate mechanotransduction-related events dynamically by controlling cell adhesion at cell shape and focal adhesion levels. The integrated technique enables achieving a submicrometric resolution in a facile and cost-effective manner.

13.
Mater Today Bio ; 15: 100335, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813578

RESUMO

Mechanical forces, acting on eukaryotic cells, are responsible for cell shape, cell proliferation, cell polarity, and cell differentiation thanks to two cells abilities known as mechanosensing and mechanotransduction. Mechanosensing consists of the ability of a cell to sense mechanical cues, while mechanotransduction is the capacity of a cell to respond to these signals by translating mechanical stimuli into biochemical ones. These signals propagate from the extracellular matrix to the nucleus with different well known physical connections, but how the mechanical signals are transduced into biochemical ones remains an open challenge. Recent findings showed that the cell-generated forces affect the translocation of transcription factors (TFs) from the cytoplasm to the nucleus. This mechanism is affected by the features of nuclear pore complexes. Owing to the complex patterns of strains and stresses of the nuclear envelope caused by cytoskeletal forces, it is likely that the morphology of NPC changes as cytoskeleton assemblies' change. This may ultimately affect molecular transport through the nucleus, hence altering cell functions. Among the various TFs, Yes-associated protein (YAP), which is typically involved in cell proliferation, survival, and differentiation, is able to activate specific pathways when entrapped into the cell nucleus. Here, starting from experimental results, we develop a multiscale finite element (FE) model aimed to simulate the macroscopic cell spreading and consequent changes in the cell mechanical behaviour to be related to the NPCs changes and YAP nuclear transport.

14.
J Theor Biol ; 280(1): 150-8, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21530547

RESUMO

Cell migration is a phenomenon that is involved in several physiological processes. In the absence of external guiding factors it shares analogies with Brownian motion. The presence of biochemical or biophysical cues, on the other hand, can influence cell migration transforming it in a biased random movement. Recent studies have shown that different cell types are able to recognise the mechanical properties of the substratum over which they move and that these properties direct the motion through a process called durotaxis. In this work a 2D mathematical model for the description of this phenomenon is presented. The model is based on the Langevin equation that has been modified to take into account the local mechanical properties of the substratum perceived by the cells. Numerical simulations of the model provide individual cell tracks, whose characteristics can be compared with experimental observations directly. The present model is solved for two important cases: an isotropic substratum, to check that random motility is recovered as a subcase, and a biphasic substratum, to investigate durotaxis. The degree of agreement is satisfactory in both cases. The model can be a useful tool for quantifying relevant parameters of cell migration as a function of the substratum mechanical properties.


Assuntos
Movimento Celular/fisiologia , Modelos Biológicos
15.
Dent Mater ; 37(11): 1688-1697, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34497022

RESUMO

OBJECTIVE: The aim of this study was to evaluate the influence of three different dental implant neck geometries, under a combined compressive/shear load using finite element analysis (FEA). The implant neck was positioned in D2 quality bone at the crestal level or 2 mm below. METHODS: One dental implant (4.2 × 9 mm) was digitized by reverse engineering techniques using micro CT and imported into Computer Aided Design (CAD) software. Non-uniform rational B-spline surfaces were reconstructed, generating a 3D volumetric model similar to the digitized implant. Three different models were generated with different implant neck configurations, namely 0°, 10° and 20°. D2 quality bone, composed of cortical and trabecular structure, was modeled using data from CT scans. The implants were included in the bone model using a Boolean operation. Two different fixture insertion depths were simulated for each implant: 2 mm below the crestal bone and exactly at the level of the crestal bone. The obtained models were imported to FEA software in STEP format. Von Mises equivalent strains were analyzed for the peri-implant D2 bone type, considering the magnitude and volume of the affected surrounding cortical and trabecular bone. The highest strain values in both cortical and trabecular tissue at the peri-implant bone interface were extracted and compared. RESULTS: All implant models were able to distribute the load at the bone-implant contact (BIC) with a similar strain pattern between the models. At the cervical region, however, differences were observed: the models with 10° and 20° implant neck configurations (Model B and C), showed a lower strain magnitude when compared to the straight neck (Model A). These values were significantly lower when the implants were situated at crestal bone levels. In the apical area, no differences in strain values were observed. SIGNIFICANCE: The implant neck configuration influenced the strain distribution and magnitude in the cortical bone and cancellous bone tissues. To reduce the strain values and improve the load dissipation in the bone tissue, implants with 10° and 20 neck configuration should be preferred instead of straight implant platforms.


Assuntos
Implantes Dentários , Desenho Assistido por Computador , Análise do Estresse Dentário , Análise de Elementos Finitos , Estresse Mecânico
16.
Colloids Surf B Biointerfaces ; 197: 111439, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33137636

RESUMO

The mechanical interpretation of the plethora of factors that governs cellular localization of amyloid aggregates is crucial for planning novel therapeutical interventions in neurodegenerative diseases since these aggregates exert a primary role in the proteostasis machinery. The uptake of Cell Penetrating Peptides (CPPs) conjugated with different amyloid polypeptides occurs via different endocytic processes regulated by cytoskeleton organization and cell morphology. Herein, we deepened the internalization of an amyloid system in cells cultured on nanopatterned surfaces that represent a powerful tool to shape cell and regulate its contractility. We analyzed the behavior of an amyloid model system, employing NPM1264-277 sequence, covalently conjugated to Tat fragment 48-60 as CPP. To investigate its internalization mechanism, we followed the formation of aggregates on two kinds of substrates: a flat and a nanopatterned surface. Herein, investigations during time were carried out by employing both confocal and second harmonic generation (SHG) microscopies. We showed that modifications of cellular environment affect peptide localization, its cytoplasmic translocation and the size of amyloid aggregates.


Assuntos
Peptídeos Penetradores de Células , Proteínas Amiloidogênicas , Transporte Biológico , Peptídeos Penetradores de Células/metabolismo , Endocitose , Proteínas Nucleares , Nucleofosmina
17.
Sci Rep ; 11(1): 22668, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811382

RESUMO

In spite of tremendous advances made in the comprehension of mechanotransduction, implementation of mechanobiology assays remains challenging for the broad community of cell biologists. Hydrogel substrates with tunable stiffness are essential tool in mechanobiology, allowing to investigate the effects of mechanical signals on cell behavior. A bottleneck that slows down the popularization of hydrogel formulations for mechanobiology is the assessment of their stiffness, typically requiring expensive and sophisticated methodologies in the domain of material science. Here we overcome such barriers offering the reader protocols to set-up and interpret two straightforward, low cost and high-throughput tools to measure hydrogel stiffness: static macroindentation and micropipette aspiration. We advanced on how to build up these tools and on the underlying theoretical modeling. Specifically, we validated our tools by comparing them with leading techniques used for measuring hydrogel stiffness (atomic force microscopy, uniaxial compression and rheometric analysis) with consistent results on PAA hydrogels or their modification. In so doing, we also took advantage of YAP/TAZ nuclear localization as biologically validated and sensitive readers of mechanosensing, all in all presenting a suite of biologically and theoretically proven protocols to be implemented in most biological laboratories to approach mechanobiology.

18.
Methods Cell Biol ; 157: 169-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334714

RESUMO

Collagen is the main component of the extracellular matrix and it plays a key role in tumor progression. Commercial collagen solutions are derived from animals, such as rat-tail and bovine or porcine skin. Their cost is quite high and the product is stable only at low temperature, with the disadvantage of a short expiring date. Most importantly, lot-to-lot variability can occur and the reconstituted collagen gels differ significantly from native tissues in terms of both structure and stiffness. In this chapter, we describe a straightforward method to use native, collagen rich skin samples derived from by-products of the tanning industry. The protocol proposed preserves the microstructure of the ovine skin collagen network, offering structurally competent and more relevant model to investigate cell behavior in vitro. Other advantages of the proposed procedure consist in the cost-effectiveness of the process and an increased level of reproducibility. The decellularized ovine skin samples support the adhesion and growth of different cancer cell lines (pancreatic, breast and melanoma cells). The proposed decellularized skin scaffolds are meant as future low-cost competitors for conventional porous scaffold derived by biomaterials, since they offer a biomimetic environment for the cells.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno/isolamento & purificação , Matriz Extracelular/química , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células/economia , Linhagem Celular Tumoral , Colágeno/química , Reprodutibilidade dos Testes , Ovinos , Pele/química , Pele/citologia , Engenharia Tecidual/economia , Alicerces Teciduais/economia
19.
Artigo em Inglês | MEDLINE | ID: mdl-32211397

RESUMO

The extracellular microenvironment proved to exert a potent regulatory effect over different aspects of Embryonic Stem Cells (ESCs) behavior. In particular, the employment of engineered culture surfaces aimed at modulating ESC self-organization resulted effective in directing ESCs toward specific fate decision. ESCs fluctuate among different levels of functional potency and in this context the Zscan4 gene marks the so-called "metastate," a cellular state in which ESCs retain both self-renewal and pluripotency capabilities. Here we investigated the impact of topographic cues on ESCs pluripotency, differentiation and organization capabilities. To this aim, we engineered culturing platforms of nanograted surfaces with different features size and we investigated their impact on ESCs multicellular organization and Zscan4 gene expression. We showed that the morphology of ESC-derived aggregates and Zscan4 expression are strictly intertwined. Our data suggest that ESC Zscan4 metastate can be promoted if the adhesive surface conditions guide cellular self-aggregation into 3D dome-like structure, in which both cell-material interactions and cell-cell contact are supportive for Zscan4 expression.

20.
J Biomed Mater Res A ; 107(11): 2536-2546, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325203

RESUMO

Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging, making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here, aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness, whereas stiff ones, in presence of biochemical supplements, promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population, that is, soft aligned matrices ameliorate the spontaneous adipogenic differentiation, whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment, which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Matriz Extracelular/química , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Linhagem Celular , Células-Tronco Mesenquimais/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA