Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 148: 105852, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853397

RESUMO

Highly focused images of skin captured with ordinary cameras, called macro-images, are extensively used in dermatology. Being highly focused views, the macro-images contain only lesions and background regions. Hence, the localization of lesions on the macro-images is a simple thresholding problem. However, algorithms that offer an accurate estimate of threshold and retain consistent performance on different dermatological macro-images are rare. A deep learning model, termed 'Deep Threshold Prediction Network (DTP-Net)', is proposed in this paper to address this issue. For training the model, grayscale versions of the macro-images are fed as input to the model, and the corresponding gray-level threshold values at which the Dice similarity index (DSI) between the segmented and the ground-truth images are maximized are defined as the targets. The DTP-Net exhibited the least value of root mean square error for the predicted threshold, compared with 11 state-of-the-art threshold estimation algorithms (such as Otsu's thresholding, Valley emphasized otsu's thresholding, Isodata thresholding, Histogram slope difference distribution-based thresholding, Minimum error thresholding, Poisson's distribution-based minimum error thresholding, Kapur's maximum entropy thresholding, Entropy-weighted otsu's thresholding, Minimum cross-entropy thresholding, Type-2 fuzzy-based thresholding, and Fuzzy entropy thresholding). The DTP-Net could learn the difference between the lesion and background in the intensity space and accurately predict the threshold that separates the lesion from the background. The proposed DTP-Net can be integrated into the segmentation module in automated tools that detect skin cancer from dermatological macro-images.


Assuntos
Redes Neurais de Computação , Neoplasias Cutâneas , Algoritmos , Entropia , Humanos , Processamento de Imagem Assistida por Computador
2.
Comput Methods Programs Biomed ; 222: 106935, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35724474

RESUMO

BACKGROUND AND OBJECTIVE: During the initial stages, skin lesions may not have sufficient intensity difference or contrast from the background region on dermatological macro-images. The lack of proper light exposure at the time of capturing the image also reduces the contrast. Low contrast between lesion and background regions adversely impacts segmentation. Enhancement techniques for improving the contrast between lesion and background skin on dermatological macro-images are limited in the literature. An EfficientNet-based modified sigmoid transform for enhancing the contrast on dermatological macro-images is proposed to address this issue. METHODS: A modified sigmoid transform is applied in the HSV color space. The crossover point in the modified sigmoid transform that divides the macro-image into lesion and background is predicted using a modified EfficientNet regressor to exclude manual intervention and subjectivity. The Modified EfficientNet regressor is constructed by replacing the classifier layer in the conventional EfficientNet with a regression layer. Transfer learning is employed to reduce the training time and size of the dataset required to train the modified EfficientNet regressor. For training the modified EfficientNet regressor, a set of value components extracted from the HSV color space representation of the macro-images in the training dataset is fed as input. The corresponding set of ideal crossover points at which the values of Dice similarity coefficient (DSC) between the ground-truth images and the segmented output images obtained from Otsu's thresholding are maximum, is defined as the target. RESULTS: On images enhanced with the proposed framework, the DSC of segmented results obtained by Otsu's thresholding increased from 0.68 ± 0.34 to 0.81 ± 0.17. CONCLUSIONS: The proposed algorithm could consistently improve the contrast between lesion and background on a comprehensive set of test images, justifying its applications in automated analysis of dermatological macro-images.


Assuntos
Melanoma , Nevo , Dermatopatias , Neoplasias Cutâneas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA