Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232575

RESUMO

In recent years, several studies aimed to investigate the metabolic effects of non-functioning or absent cyclophilin D (CypD), a crucial regulatory component of mitochondrial permeability transition pores. It has been reported that the lack of CypD affects glucose and lipid metabolism. However, the findings are controversial regarding the metabolic pathways involved, and most reports describe the effect of a high-fat diet on metabolism. We performed a lipidomic analysis of plasma and liver samples of CypD-/- and wild-type (WT) mice to reveal the lipid-specific alterations resulting from the absence of CypD. In the CypD-/- mice compared to the WT animals, we found a significant change in 52% and 47% of the measured 225 and 201 lipid species in liver and plasma samples, respectively. The higher total lipid content detected in these tissues was not accompanied by abdominal fat accumulation assessed by nuclear magnetic resonance imaging. We also documented characteristic changes in the lipid composition of the liver and plasma as a result of CypD ablation with the relative increase in polyunsaturated membrane lipid species. In addition, we did not observe remarkable differences in the lipid distribution of hepatocytes using histochemistry, but we found characteristic changes in the hepatocyte ultrastructure in CypD-/- animals using electron microscopy. Our results highlight the possible long-term effects of CypD inhibition as a novel therapeutic consideration for various diseases.


Assuntos
Lipidômica , Proteínas de Transporte da Membrana Mitocondrial , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Glucose , Fígado/metabolismo , Lipídeos de Membrana , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
Biochim Biophys Acta ; 1852(12): 2563-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385159

RESUMO

Sepsis caused by LPS is characterized by an intense systemic inflammatory response affecting the lungs, causing acute lung injury (ALI). Dysfunction of mitochondria and the role of reactive oxygen (ROS) and nitrogen species produced by mitochondria have already been proposed in the pathogenesis of sepsis; however, the exact molecular mechanism is poorly understood. Oxidative stress induces cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT), leading to organ failure in sepsis. In previous studies mPT was inhibited by cyclosporine A which, beside CypD, inhibits cyclophilin A, B, C and calcineurin, regulating cell death and inflammatory pathways. The immunomodulatory side effects of cyclosporine A make it unfavorable in inflammatory model systems. To avoid these uncertainties in the molecular mechanism, we studied endotoxemia-induced ALI in CypD(-/-) mice providing unambiguous data for the pathological role of CypD-dependent mPT in ALI. Our key finding is that the loss of this essential protein improves survival rate and it can intensely ameliorate endotoxin-induced lung injury through attenuated proinflammatory cytokine release, down-regulation of redox sensitive cellular pathways such as MAPKs, Akt, and NF-κB and reducing the production of ROS. Functional inhibition of NF-κB was confirmed by decreased expression of NF-κB-mediated proinflammatory genes. We demonstrated that impaired mPT due to the lack of CypD reduces the severity of endotoxemia-induced lung injury suggesting that CypD specific inhibitors might have a great therapeutic potential in sepsis-induced organ failure. Our data highlight a previously unknown regulatory function of mitochondria during inflammatory response.

3.
Biochem Cell Biol ; 93(3): 241-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25728038

RESUMO

According to recent results, various mitochondrial processes can actively regulate the immune response. In the present report, we studied whether mitochondrial permeability transition (mPT) has such a role. To this end, we compared bacterial lipopolysaccharide (LPS)-induced inflammatory response in cyclophilin D (CypD) knock-out and wild-type mouse resident peritoneal macrophages. CypD is a regulator of mPT; therefore, mPT is damaged in CypD(-/-) cells. We chose this genetic modification-based model because the mPT inhibitor cyclosporine A regulates inflammatory processes by several pathways unrelated to the mitochondria. The LPS increased mitochondrial depolarisation, cellular and mitochondrial reactive oxygen species production, nuclear factor-κB activation, and nitrite- and tumour necrosis factor α accumulation in wild-type cells, but these changes were diminished or absent in the CypD-deficient macrophages. Additionally, LPS enhanced Akt phosphorylation/activation as well as FOXO1 and FOXO3a phosphorylation/inactivation both in wild-type and CypD(-/-) cells. However, Akt and FOXO phosphorylation was significantly more pronounced in CypD-deficient compared to wild-type macrophages. These results provide the first pieces of experimental evidence for the functional regulatory role of mPT in the LPS-induced early inflammatory response of macrophages.


Assuntos
Ciclofilinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Macrófagos Peritoneais/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Cancer ; 11: 34, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583868

RESUMO

BACKGROUND: 2,4-Dimethoxyphenyl-E-4-arylidene-3-isochromanone (IK11) was previously described to induce apoptotic death of A431 tumor cells. In this report, we investigated the molecular action of IK11 in the HepG2 human hepatocellular carcinoma cell line to increase our knowledge of the role of poly (ADP-ribose)-polymerase (PARP), protein kinase B/Akt and mitogen activated protein kinase (MAPK) activation in the survival and death of tumor cells and to highlight the possible role of PARP-inhibitors in co-treatments with different cytotoxic agents in cancer therapy. RESULTS: We found that sublethal concentrations of IK11 prevented proliferation, migration and entry of the cells into their G2 phase. At higher concentrations, IK11 induced reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activation of c-Jun N-terminal kinase 2 (JNK2), and substantial loss of HepG2 cells. ROS production appeared marginal in mediating the cytotoxicity of IK11 since N-acetyl cysteine was unable to prevent it. However, the PARP inhibitor PJ34, although not a ROS scavenger, strongly inhibited both IK11-induced ROS production and cell death. JNK2 activation seemed to be a major mediator of the effect of IK11 since inhibition of JNK resulted in a substantial cytoprotection while inhibitors of the other kinases failed to do so. Inhibition of Akt slightly diminished the effect of IK11, while the JNK and Akt inhibitor and ROS scavenger trans-resveratrol completely protected against it. CONCLUSIONS: These results indicate significant involvement of PARP, a marginal role of ROS and a pro-apoptotic role of Akt in this system, and raise attention to a novel mechanism that should be considered when cancer therapy is augmented with PARP-inhibition, namely the cytoprotection by inhibition of JNK2.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fenantrenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Inibidores de Poli(ADP-Ribose) Polimerases , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
FEBS Open Bio ; 11(3): 684-704, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471430

RESUMO

Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.


Assuntos
Endotoxemia/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Lipopolissacarídeos/efeitos adversos , Mitocôndrias/metabolismo , Peptidil-Prolil Isomerase F/genética , Animais , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Masculino , Camundongos , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Estresse Oxidativo , Análise de Sequência de RNA , Sequenciamento do Exoma
6.
J Nutr ; 139(2): 291-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19106314

RESUMO

Antiinflammatory properties of polyphenols in natural products, traditional medicines, and healthy foods were recently attributed to highly soluble metabolites produced by the microflora of the intestines rather than the polyphenols themselves. To provide experimental basis for this hypothesis, we measured antiinflammatory properties of ferulaldehyde (FA), a natural intermediate of polyphenol metabolism of intestinal microflora, in a murine lipopolysaccharide (LPS)-induced septic shock model. We found that intraperitoneally administered FA (6 mg/kg) prolonged the lifespan of LPS-treated (40 mg/kg) mice, decreased the inflammatory response detected by T(2)-weighted in vivo MRI, decreased early proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin (IL)-1beta, and increased the antiinflammatory IL-10 in the sera of the mice. Additionally, FA inhibited LPS-induced activation of nuclear factor kappaB transcription factor in the liver of the mice. According to our data, these effects were probably due to attenuating LPS-induced activation of c-Jun N-terminal kinase and Akt. Furthermore, FA decreased free radical and nitrite production in LPS plus interferon-gamma-treated primary mouse hepatocytes, whose effects are expected to contribute to its antiinflammatory property. These data provide direct in vivo evidence, that a water-soluble degradation product of polyphenols could be responsible for, or at least could significantly contribute to, the beneficial antiinflammatory effects of polyphenol-containing healthy foods, natural products, and traditional medicines.


Assuntos
Aldeídos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Aldeídos/química , Animais , Interleucina-10/sangue , Interleucina-1beta/sangue , Lipopolissacarídeos/antagonistas & inibidores , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Solubilidade , Fator de Necrose Tumoral alfa/metabolismo , Água/química
7.
Eur J Pharmacol ; 748: 61-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25528327

RESUMO

Resveratrol is a polyphenol found in grapes and red wine, showing well-characterized anti-inflammatory and antiproliferative activities. In order to exceed resveratrol׳s biological effects and to reveal the structural determinants of the molecule׳s activity, numerous derivatives were synthesized recently. Most of these resveratrol analogs vary from the original molecule in the number, position or identity of the phenolic functional groups. Investigation of the analogs provided important data regarding structure-activity relationship of the molecule. With the exception of cis- and trans-resveratrol and the reduced form dihydroresveratrol, little is known about the molecular effects of the stilbene backbone. In the present study we investigated the anti-inflammatory properties of a new, triple-bond resveratrol analog, 3,4',5-trihydroxy-diphenylacetylene (TDPA) on lipopolysaccharide-stimulated RAW macrophages. We found that the analog had weaker antioxidant activity and stronger inhibitory effect on nuclear factor-kappaB activation, and on cyclooxygenase-2, tumor necrosis factor α and interleukin-6 production. It also prevented lipopolysaccharide-induced depolarization of the mitochondrial membrane. In contrast to resveratrol, TDPA increased the phosphorylation of c-Jun N-terminal and p38 mitogen activated protein kinases. In summary, we identified a novel compound with better anti-inflammatory properties than resveratrol. Our results contributed to a better understanding of the structural determinants of resveratrol׳s biological activities.


Assuntos
Acetileno/análogos & derivados , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Resorcinóis/química , Resorcinóis/farmacologia , Estilbenos/química , Acetileno/química , Acetileno/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Relação Estrutura-Atividade
8.
Biochem Pharmacol ; 65(7): 1115-28, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12663047

RESUMO

Although, the antiarrhythmic effect of amiodarone is well characterized, its effect on post-ischemic heart and cardiomyocytes, as well as the mechanism of its toxicity on extracardiac tissues is still poorly understood. In this study, we analyzed energy metabolism in situ during ischemia-reperfusion in Langendorff-perfused heart model by measuring the high-energy phosphate metabolites using 31P NMR spectroscopy. The toxicity of amiodarone on cardiomyocytes and cell lines of extracardiac origin, as well as direct effect of the drug on mitochondrial functions in isolated mitochondria was also analyzed. Amiodarone, when was present at low concentrations and predominantly in membrane bound form, protected heart and mitochondrial energy metabolism from ischemia-reperfusion-induced damages in Langendorff-perfused heart model. Toxicity of the drug was significantly higher on hepatocytes and pancreatic cells than on cardiomyocytes. In isolated mitochondria, amiodarone did not induce reactive oxygen species formation, while it affected mitochondrial permeability transition in a concentration dependent way. Up to the concentration of 10 microM, the drug considerably inhibited Ca(2+)-induced permeability transition, while at higher concentrations it induced a cyclosporin A independent permeability transition of its own. At concentrations where it inhibited the Ca(2+)-induced permeability transition (IC(50)=3.9+/-0.8 microM), it did not affect, between 6 and 30 microM it uncoupled, while, at higher concentrations it inhibited the respiratory chain. Thus, the concentration dependent nature of amiodarone's effect on permeability transition together with the different sensitivities of the tissues toward amiodarone can be involved in the beneficial cardiac and the simultaneous toxic extracardiac effects of the drug.


Assuntos
Amiodarona/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Células Tumorais Cultivadas
9.
Biochem Pharmacol ; 65(8): 1373-82, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12694878

RESUMO

The lack of efficacy of anti-inflammatory drugs, anti-coagulants, anti-oxidants, etc. in critically ill patients has shifted interest towards developing alternative treatments. Since inhibitors of the nuclear enzyme poly-(ADP-ribose) polymerase (PARP) were found to be beneficial in many pathophysiological conditions associated with oxidative stress and PARP-1 knock-out mice proved to be resistant to bacterial lipopolysaccharide (LPS)-induced septic shock, PARP inhibitors are candidates for such a role. In this study, the mechanism of the protective effect of a potent PARP-1 inhibitor, PJ34 was studied in LPS-induced (20mg/kg, i.p.) septic shock in mice. We demonstrated a significant inflammatory response by magnetic resonance imaging in the dorsal subcutaneous region, in the abdominal regions around the kidneys and in the inter-intestinal cavities. We have found necrotic and apoptotic histological changes as well as obstructed blood vessels in the liver and small intestine. Additionally, we have detected elevated tumor necrosis factor-alpha levels in the serum and nuclear factor kappa B activation in liver of LPS-treated mice. Pre-treating the animals with PJ34 (10mg/kg, i.p.), before the LPS challenge, besides rescuing the animals from LPS-induced death, attenuated all these changes presumably by activating the phosphatidylinositol 3-kinase-Akt/protein kinase B cytoprotective pathway.


Assuntos
Endotoxinas/toxicidade , Inibidores Enzimáticos/farmacologia , Inflamação/fisiopatologia , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas/genética , Choque Séptico/fisiopatologia , Animais , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Escherichia coli , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Sepse/enzimologia , Sepse/patologia , Sepse/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/patologia
10.
J Photochem Photobiol B ; 132: 1-9, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24556581

RESUMO

Diosmetin (DIOS) is a flavone aglycone commonly occurring in citrus species and olive leaves, in addition it is one of the active ingredients of some medications. Based on both in vitro and in vivo studies several beneficial effects are attributed to DIOS but the biochemical background of its action seems to be complex and it has not been completely explored yet. Previous investigations suggest that most of the flavonoid aglycones have negative effect on ATP synthesis in a dose dependent manner. In our study 17 flavonoids were tested and interestingly DIOS caused a significant elevation of intracellular ATP levels after 6- and 12-h incubation in MDCK kidney cells. In order to understand the mechanism of action, intracellular ATP and protein levels, ATP/ADP ratio, cell viability and ROS levels were determined after DIOS treatment. In addition, impacts of different enzyme inhibitors and effect of DIOS on isolated rat liver mitochondria were also tested. Finally, the influence of DIOS on the ATP depleting effect of the mycotoxin, ochratoxin A was also investigated. Our major conclusions are the followings: DIOS increases intracellular ATP levels both in kidney and in liver cells. Inhibition of glycolysis or citric acid cycle does not decrease the observed effect. DIOS-induced elevation of ATP levels is completely abolished by the inhibition of ATP synthase. DIOS is able to completely reverse the ATP-depleting effect of the mycotoxin, ochratoxin A. Most probably the DIOS-induced impact on ATP system does not originate from the antioxidant property of DIOS. Based on our findings DIOS may be promising agent to positively influence ATP depletion caused by some metabolic poisons.


Assuntos
Trifosfato de Adenosina/metabolismo , Flavonoides/farmacologia , Rim/embriologia , Ocratoxinas/toxicidade , Complexos de ATP Sintetase/antagonistas & inibidores , Complexos de ATP Sintetase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Flavonoides/química , Células Hep G2 , Humanos , Rim/citologia , Rim/metabolismo , Células Madin Darby de Rim Canino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
J Nutr Biochem ; 24(5): 819-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22925919

RESUMO

Resveratrol was suggested to inhibit Toll-like receptor (TLR)4-mediated activation of nuclear factor-κB (NF-κB) and Toll/interleukin-1 receptor domain-containing adaptor inducing interferon-ß (TRIF)-(TANK)-binding kinase 1, but the myeloid differentiation primary response gene 88-tumor necrosis factor receptor-associated factor 6 (TRAF6) pathway is not involved in this effect. However, involvement of TRAF6 in this process is still elusive since cross talk between TRIF and TRAF6 has been reported in lipopolysaccharide (LPS)-induced signaling. Using RAW 264.7 macrophages, we determined the effect of resveratrol on LPS-induced TRAF6 expression, ubiquitination as well as activation of mitogen-activated protein (MAP) kinases and Akt in order to elucidate its involvement in TLR4 signaling. LPS-induced transient elevation in TRAF6 mRNA and protein expressions is suppressed by resveratrol. LPS induces the ubiquitination of TRAF6, which has been reported to be essential for Akt activation and for transforming growth factor-ß activated kinase-1-NAP kinase kinase 6 (MKK6)-mediated p38 and c-Jun N-terminal kinase (JNK) activation. We found that resveratrol diminishes the effect of LPS on TRAF6 ubiquitination and activation of JNK and p38 MAP kinases, while it has no effect on the activation of extracellular-signal-regulated kinase (ERK)1/2. The effect of resveratrol on MAP kinase inhibition is significant since TRAF6 activation was reported to induce activation of JNK and p38 MAP kinase while not affecting ERK1/2. Moreover, Akt was identified previously as a direct target of TRAF6, and we found that, similarly to MAPKs, phosphorylation pattern of Akt followed the activation of TRAF6, and it was inhibited by resveratrol at all time points. Here, we provide the first evidence that resveratrol, by suppressing LPS-induced TRAF6 expression and ubiquitination, attenuates the LPS-induced TLR4-TRAF6, MAP kinase and Akt pathways that can be significant in its anti-inflammatory effects.


Assuntos
NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Fator 6 Associado a Receptor de TNF/genética , Receptor 4 Toll-Like/genética , Ubiquitinação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J Leukoc Biol ; 89(1): 105-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20884647

RESUMO

Macrophages represent the first defense line against bacterial infection and therefore, play a crucial role in early inflammatory response. In this study, we investigated the role of MAPKs and MKP-1 activation in regulation of an early inflammatory response in RAW 264.7 macrophage cells. We induced the inflammatory response by treating the macrophages with LPS and inhibited an early inflammatory response by using ferulaldehyde, a water-soluble end-product of dietary polyphenol degradation that we found previously to exert its beneficial anti-inflammatory effects during the early phase of in vivo inflammation. We found that LPS-induced ROS and nitrogen species formations were reduced by ferulaldehyde in a concentration-dependent manner, and ferulaldehyde protected mitochondria against LPS-induced rapid and massive membrane depolarization. LPS induced early suppression of MKP-1, which was accompanied by activation of JNK, ERK, and p38 MAPK. By reversing LPS-induced early suppression of MKP-1, ferulaldehyde diminished MAPK activation, thereby inhibiting NF-κB activation, mitochondrial depolarization, and ROS production. Taken together, our data suggest that ferulaldehyde exerts its early anti-inflammatory effect by preserving the mitochondrial membrane integrity and shifting the expression of MKP-1 forward in time in macrophages.


Assuntos
Aldeídos/farmacologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Fosfatase 1 de Especificidade Dupla/genética , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Dióxido de Nitrogênio/metabolismo , Fosforilação/efeitos dos fármacos , Polifenóis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
J Nutr Biochem ; 20(6): 418-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18656339

RESUMO

There is increasing evidence that moderate consumption of red wine containing high amount of polyphenols and anthocyanins is associated with decreased incidence of cardiovascular morbidity and mortality. Therefore, we hypothesized that cardiac hypertrophy and fibrosis as well as Akt (protein kinase B, PKB) and protein kinase C (PKC) cascades can be beneficially influenced by an alcohol-free red wine (AFRW) extract rich in 14 types of polyphenols and 4 types of anthocyanins during cardiac remodeling. To test this assumption, rats were treated with isoproterenol (ISO) to induce postinfarction remodeling and were given tap water or AFRW ad libitum for 8 weeks. Control rats received vehicle instead of ISO. Heart mass/body mass and ventricle mass/body mass ratios, diameter of cardiomyocytes, phosphorylation of PKC alpha/beta II and protein kinase B/Akt, and deposition of collagen type III were determined from the hearts of all four groups of rats. All measured gravimetric parameters, myocyte diameters and the amount of collagen type III decreased, and the phosphorylation of PKC alpha/beta II was reduced in the ISO+AFRW group compared to the ISO group. AFRW induced activation of Akt, one of the best characterized cytoprotective pathways even without ISO treatment, and this activation was further increased in the ISO+AFRW group. These data suggest that AFRW treatment has a protective effect on hearts undergoing postinfarction remodeling by repressing hypertrophy-associated increased phosphorylation of PKC alpha/beta II and by activating Akt, providing a molecular mechanism for the cardioprotective effect of red wine polyphenols.


Assuntos
Cardiotônicos/farmacologia , Isoproterenol/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Vinho , Animais , Masculino , Fosforilação , Proteína Quinase C beta , Ratos , Ratos Sprague-Dawley
14.
J Pharmacol Exp Ther ; 307(2): 615-25, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12970391

RESUMO

Amiodarone is a widely used and potent antiarrhythmic agent that is metabolized to desethylamiodarone. Both amiodarone and its metabolite possess antiarrhythmic effect, and both compounds can contribute to toxic side effects. Here, we compare the effect of amiodarone and desethylamiodarone on mitochondrial energy metabolism, membrane potential, and permeability transition and on mitochondria-related apoptotic events. Amiodarone but not desethylamiodarone protects the mitochondrial energy metabolism of the perfused heart during ischemia in perfused hearts. At low concentrations, amiodarone stimulated state 4 respiration due to an uncoupling effect, inhibited the Ca2+-induced mitochondrial swelling, whereas it dissipated the mitochondrial membrane potential (Deltapsi), and prevented the ischemia-reperfusion-induced release of apoptosis-inducing factor (AIF). At higher concentrations, amiodarone inhibited the mitochondrial respiration and simulated a cyclosporin A (CsA)-independent mitochondrial swelling. In contrast to these, desethylamiodarone did not stimulate state 4 respiration, did not inhibit the Ca2+-induced mitochondrial permeability transition, did not induce the collapse of Deltapsi in low concentrations, and did not prevent the nuclear translocation of AIF in perfused rat hearts, but it induced a CsA-independent mitochondrial swelling at higher concentration, like amiodarone. That is, desethylamiodarone lacks the protective effect of amiodarone seen at low concentrations, such as the inhibition of calcium-induced mitochondrial permeability transition and inhibition of the nuclear translocation of the proapoptotic AIF. On the other hand, both amiodarone and desethylamiodarone at higher concentration induced a CsA-independent mitochondrial swelling, resulting in apoptotic death that explains their extracardiac toxic effect.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Fator de Indução de Apoptose , Transporte Biológico , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Flavoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Isquemia Miocárdica/complicações , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
15.
J Pharmacol Exp Ther ; 310(1): 247-55, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14999056

RESUMO

Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) is involved in numerous pathophysiological conditions. Because PARP-1 knockout mice are resistant to endotoxin-induced shock and inhibitors of the enzyme were reported to have similar beneficial properties, we investigated the effect of 4-hydroxyquinazoline (4-HQN), a potent PARP-1 inhibitor, on the modulation of kinase cascades and the regulation of transcription factors in a rodent septic shock model. T2-weighted magnetic resonance imaging showed the pattern of anatomical localization of the inflammatory response in bacterial lipopolysaccharide (LPS)-treated mice and the anti-inflammatory effect of the PARP-1 inhibitor. We have found that 4-HQN activated the phosphatidylinositol 3 (PI3)-kinase/Akt pathway in lung, liver, and spleen, and down-regulated two elements of the MAP kinase system. Namely, it dramatically attenuated the activation of the LPS-induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinase in a tissue-specific manner. Furthermore, phosphorylation of p90RSK, a downstream target of ERK1/2, showed a similar pattern of down-regulation as did the phosphorylation of ERK1/2 and p38 after LPS and 4-HQN treatment. As a consequence of the aforementioned effects on the kinase pathways, 4-HQN decreased the activation of transcription factor nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) in LPS-induced endotoxic shock. Our results provide evidence for the first time that the beneficial effects of PARP inhibition in endotoxic shock, such as attenuation of NF-kappaB- and AP-1 transcription factor activation, are mediated, at least partially, through the regulation of the PI3-kinase/Akt pathway and MAP kinase cascades.


Assuntos
Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Quinazolinas/farmacologia , Animais , Células HeLa , Humanos , Inflamação/induzido quimicamente , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotransferases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Quinazolinonas , Baço/efeitos dos fármacos , Baço/enzimologia , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA