Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38518380

RESUMO

Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.


Assuntos
Radiobiologia , Radiometria , Raios X , Reprodutibilidade dos Testes , Radiometria/métodos , Imagens de Fantasmas , Método de Monte Carlo
2.
Phys Imaging Radiat Oncol ; 29: 100566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38487622

RESUMO

Background and purpose: Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods: The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results: Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions: This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.

3.
Phys Med Biol ; 69(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39084643

RESUMO

Objective.The aim of this work was to develop a novel artificial intelligence-assistedin vivodosimetry method using time-resolved (TR) dose verification data to improve quality of external beam radiotherapy.Approach. Although threshold classification methods are commonly used in error classification, they may lead to missing errors due to the loss of information resulting from the compression of multi-dimensional electronic portal imaging device (EPID) data into one or a few numbers. Recent research has investigated the classification of errors on time-integrated (TI)in vivoEPID images, with convolutional neural networks showing promise. However, it has been observed previously that TI approaches may cancel out the error presence onγ-maps during dynamic treatments. To address this limitation, simulated TRγ-maps for each volumetric modulated arc radiotherapy angle were used to detect treatment errors caused by complex patient geometries and beam arrangements. Typically, such images can be interpreted as a set of segments where only set class labels are provided. Inspired by recent weakly supervised approaches on histopathology images, we implemented a transformer based multiple instance learning approach and utilized transfer learning from TI to TRγ-maps.Main results. The proposed algorithm performed well on classification of error type and error magnitude. The accuracy in the test set was up to 0.94 and 0.81 for 11 (error type) and 22 (error magnitude) classes of treatment errors, respectively.Significance. TR dose distributions can enhance treatment delivery decision-making, however manual data analysis is nearly impossible due to the complexity and quantity of this data. Our proposed model efficiently handles data complexity, substantially improving treatment error classification compared to models that leverage TI data.


Assuntos
Dosagem Radioterapêutica , Fatores de Tempo , Equipamentos e Provisões Elétricas , Humanos , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Radiometria
4.
Phys Med Biol ; 69(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593826

RESUMO

Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Artefatos , Controle de Qualidade
5.
Phys Med Biol ; 69(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870948

RESUMO

Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.


Assuntos
Braquiterapia , Imagens de Fantasmas , Doses de Radiação , Dosagem Radioterapêutica , Braquiterapia/métodos , Braquiterapia/instrumentação , Incerteza , Humanos , Fatores de Tempo , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Estudo de Prova de Conceito , Masculino
6.
Artigo em Inglês | MEDLINE | ID: mdl-38965830

RESUMO

BACKGROUND: Cachexia, a syndrome with high prevalence in non-small cell lung cancer patients, impairs quality of life and reduces tolerance and responsiveness to cancer therapy resulting in decreased survival. Optimal nutritional care is pivotal in the treatment of cachexia and a recommended cornerstone of multimodal therapy. Here, we investigated the therapeutic effect of an intervention diet consisting of a specific combination of high protein, leucine, fish oil, vitamin D, galacto-oligosaccharides, and fructo-oligosaccharides on the development and progression of cachexia in an orthotopic lung cancer mouse model. METHODS: Eleven-week-old male 129S2/Sv mice were orthotopically implanted with 344P lung epithelial tumour cells or vehicle (control). Seven days post-implantation tumour-bearing (TB) mice were allocated to either intervention- or isocaloric control diet. Cachexia was defined as 5 days of consecutive body weight loss, after which mice were euthanized for tissue analyses. RESULTS: TB mice developed cachexia accompanied by significant loss of skeletal muscle mass and epididymal fat mass compared with sham operated mice. The cachectic endpoint was significantly delayed (46.0 ± 15.2 vs. 34.7 ± 11.4 days), and the amount (-1.57 ± 0.62 vs. -2.13 ± 0.57 g) and progression (-0.26 ± 0.14 vs. -0.39 ± 0.11 g/day) of body weight loss were significantly reduced by the intervention compared with control diet. Moreover, systemic inflammation (pentraxin-2 plasma levels) and alterations in molecular markers for proteolysis and protein synthesis, indicative of muscle atrophy signalling in TB-mice, were suppressed in skeletal muscle by the intervention diet. CONCLUSIONS: Together, these data demonstrate the potential of this multinutrient intervention, targeting multiple components of cachexia, as integral part of lung cancer management.

7.
Brachytherapy ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969605

RESUMO

PURPOSE: This study aimed to develop and validate a Monte Carlo (MC) model for the Papillon+ contact x-ray brachytherapy (CXB) device, producing 50 kilovolt (kV) X-rays, specifically focusing on its application with a 25 mm diameter rectal applicator for contact therapy. MATERIAL AND METHODS: The validation process involved depth dose and transverse dose profile measurements using EBT3 gafchromic films positioned in a plastic water low energy range phantom. The half-value layer (HVL) was further measured and derived from the simulated X-ray spectra. RESULTS: Excellent agreement within ±2% was achieved between the measured and simulated on-axis depth dose curves for the 25 mm rectal applicator. Transverse dose profile measurements showed a high level of agreement between the simulation and measurements, on average 3.1% in contact with the applicator at the surface of the phantom and on average 1.7% at 10 mm depth. A close agreement within 5.5% was noticed concerning the HVL between the measurement and simulation. The simulated gamma spectra and 2D-dose distribution demonstrated a soft X-ray energy spectrum and a uniform dose distribution in contact with the applicator. CONCLUSIONS: An MC model was successfully developed for the Papillon+ eBT device with a 25 mm diameter rectal applicator. The validated model, with its demonstrated accuracy in depth dose and transverse dose profile simulations, is a valuable tool for quality assurance and patient safety and, in a later phase, may be used for treatment planning, dose calculations and tissue inhomogeneity corrections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA