Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 226(6): 1638-1655, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840249

RESUMO

Knowledge of how water stress impacts the carbon and water cycles is a key uncertainty in terrestrial biosphere models. We tested a new profit maximization model, where photosynthetic uptake of CO2 is optimally traded against plant hydraulic function, as an alternative to the empirical functions commonly used in models to regulate gas exchange during periods of water stress. We conducted a multi-site evaluation of this model at the ecosystem scale, before and during major droughts in Europe. Additionally, we asked whether the maximum hydraulic conductance in the soil-plant continuum kmax (a key model parameter which is not commonly measured) could be predicted from long-term site climate. Compared with a control model with an empirical soil moisture function, the profit maximization model improved the simulation of evapotranspiration during the growing season, reducing the normalized mean square error by c. 63%, across mesic and xeric sites. We also showed that kmax could be estimated from long-term climate, with improvements in the simulation of evapotranspiration at eight out of the 10 forest sites during drought. Although the generalization of this approach is contingent upon determining kmax , it presents a mechanistic trait-based alternative to regulate canopy gas exchange in global models.


Assuntos
Secas , Ecossistema , Europa (Continente) , Florestas , Folhas de Planta , Transpiração Vegetal , Água
2.
Sci Total Environ ; 811: 151378, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34728197

RESUMO

Inundation of river water during flooding deposits contaminated sediments onto floodplain topsoil. Historically, floodplains were considered an important sink for potentially toxic elements (PTEs). With increasing flood frequency and duration, due to climate change and land use change, it is important to understand the impact that further flooding may have on this legacy contamination. In this study a field-based approach was taken, extracting soil pore waters by centrifugation of soils sampled on multiple occasions from multiple locations across a floodplain site, which lies adjacent to the River Loddon in southeast England. Flooding generally decreased pore water PTE concentrations and significantly lower pore water concentrations of Cd, Cu, and Cr were found post-flood compared to pre-flood. The dominant process responsible for this observation was precipitation with sulphides resulting in PTE removal from the pore water post-flood. The changes in pH were found to be associated with the decreased pore water concentration of Cu, which suggests the pH rise may have aided adsorption mechanisms or precipitation with phosphates. The impact of flooding on the release and retention of PTEs in floodplain soils is the net effect of several key processes occurring concurrently. It is important to understand the dominant processes that drive mobility of individual PTEs on specific floodplains so that site-specific predictions can determine the impact of future floods on the environmental fate of legacy contaminants.


Assuntos
Poluentes do Solo , Solo , Inundações , Rios , Poluentes do Solo/análise , Água
3.
Sci Total Environ ; 754: 142040, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916489

RESUMO

The frequency and duration of flooding events is increasing due to land-use changes increasing run-off of precipitation, and climate change causing more intense rainfall events. Floodplain soils situated downstream of urban or industrial catchments, which were traditionally considered a sink of potentially toxic elements (PTEs) arriving from the river reach, may now become a source of legacy pollution to the surrounding environment, if PTEs are mobilised by unprecedented flooding events. When a soil floods, the mobility of PTEs can increase or decrease due to the net effect of five key processes; (i) the soil redox potential decreases which can directly alter the speciation, and hence mobility, of redox sensitive PTEs (e.g. Cr, As), (ii) pH increases which usually decreases the mobility of metal cations (e.g. Cd2+, Cu2+, Ni2+, Pb2+, Zn2+), (iii) dissolved organic matter (DOM) increases, which chelates and mobilises PTEs, (iv) Fe and Mn hydroxides undergo reductive dissolution, releasing adsorbed and co-precipitated PTEs, and (v) sulphate is reduced and PTEs are immobilised due to precipitation of metal sulphides. These factors may be independent mechanisms, but they interact with one another to affect the mobility of PTEs, meaning the effect of flooding on PTE mobility is not easy to predict. Many of the processes involved in mobilising PTEs are microbially mediated, temperature dependent and the kinetics are poorly understood. Soil mineralogy and texture are properties that change spatially and will affect how the mobility of PTEs in a specific soil may be impacted by flooding. As a result, knowledge based on one river catchment may not be particularly useful for predicting the impacts of flooding at another site. This review provides a critical discussion of the mechanisms controlling the mobility of PTEs in floodplain soils. It summarises current understanding, identifies limitations to existing knowledge, and highlights requirements for further research.

4.
Nat Geosci ; 11(9): 744-748, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30319710

RESUMO

Severe droughts in the Northern Hemisphere cause widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency, as measured for many individual plants under laboratory conditions and field experiments. Here we analyze the 13C/12C stable isotope ratio in atmospheric CO2 (reported as δ13C) to provide new observational evidence of the impact of droughts on the water-use efficiency across areas of millions of km2 and spanning one decade of recent climate variability. We find strong and spatially coherent increases in water-use efficiency along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia, and the United States in 2001-2011. The impact of those droughts on water-use efficiency and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought induced carbon-climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response.

5.
Carbon Balance Manag ; 11(1): 6, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27340428

RESUMO

BACKGROUND: The recent inclusion of the cocoa sector as an option for carbon storage necessitates the need to quantify the C stocks in cocoa systems of Ghana. RESULTS: Using farmers' fields, the carbon (C) stocks in shaded and unshaded cocoa systems selected from the Eastern (ER) and Western (WR) regions of Ghana were measured. Total ecosystem C (biomass C + soil C to 60 cm depth) ranged from 81.8 to 153.9 Mg C/ha. The bulk (~89 %) of the systems' C stock was stored in the soils. The total C stocks were higher in the WR (137.8 ± 8.6 Mg C/ha) than ER (95.7 ± 8.6 Mg C/ha). CONCLUSION: Based on the cocoa cultivation area of 1.45 million hectares, the cocoa sector in Ghana potentially could store 118.6-223.2 Gg C in cocoa systems with cocoa systems aged within 30 years regardless of shade management. Thus, the decision to include the cocoa sector in the national carbon accounting emissions budget of Ghana is warranted.

6.
Water Res ; 67: 66-76, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25262551

RESUMO

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.


Assuntos
Calluna/química , Carbono/metabolismo , Mudança Climática , Água Potável/química , Solo/química , Sphagnopsida/química , Purificação da Água/métodos , Acetonitrilas/metabolismo , Clorofórmio/metabolismo , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Fluorescência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA