RESUMO
Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.
Assuntos
Técnicas de Química Sintética , Ligantes , Processos Fotoquímicos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Alquilação , Radioisótopos de Carbono/química , Glipizida/análogos & derivados , Glipizida/química , Metilação , OxirreduçãoRESUMO
Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.
Assuntos
Cobre , Tomografia por Emissão de Pósitrons , Radioquímica , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Radioisótopos de FlúorRESUMO
18F labeling strategies for unmodified peptides with [18F]fluoride require 18F-labeled prosthetics for bioconjugation more often with cysteine thiols or lysine amines. Here we explore selective radical chemistry to target aromatic residues applying C-H 18F-trifluoromethylation. We report a one-step route to [18F]CF3SO2NH4 from [18F]fluoride and its application to direct [18F]CF3 incorporation at tryptophan or tyrosine residues using unmodified peptides as complex as recombinant human insulin. The fully automated radiosynthesis of octreotide[Trp(2-CF218F)] enables in vivo positron emission tomography imaging.
Assuntos
Clorofluorcarbonetos de Metano/química , Radioisótopos de Flúor/química , Peptídeos/química , Compostos de Enxofre/química , Metilação , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/químicaRESUMO
A highly reactive electrophilic bromodifluoromethylthiolating reagent, α-cumyl bromodifluoro-methanesulfenateâ 1, was prepared to allow for direct bromodifluoromethylthiolation of aryl boron reagents. This coupling reaction takes place under copper catalysis, and affords a large range of bromodifluoromethylthiolated arenes. These compounds are amenable to various transformations including halogen exchange with [18 F]KF/K222 , a process giving access to [18 F]arylSCF3 in two steps from the corresponding aryl boronic pinacol esters.
RESUMO
The 18F-labeling of 5-(trifluoromethyl)-dibenzothiophenium trifluoromethanesulfonate, commonly referred to as the Umemoto reagent, has been accomplished applying a halogen exchange 18F-fluorination with 18F-fluoride, followed by oxidative cyclization with Oxone and trifluoromethanesulfonic anhydride. This new 18F-reagent allows for the direct chemoselective 18F-labeling of unmodified peptides at the thiol cysteine residue.
Assuntos
Hidrocarbonetos Fluorados/síntese química , Peptídeos/química , Radioisótopos de Flúor/química , Hidrocarbonetos Fluorados/química , Estrutura MolecularRESUMO
Molecules labeled with fluorine-18 (18F) are used in positron emission tomography to visualize, characterize and measure biological processes in the body. Despite recent advances in the incorporation of 18F onto arenes, the development of general and efficient approaches to label radioligands necessary for drug discovery programs remains a significant task. This full account describes a derisking approach toward the radiosynthesis of heterocyclic positron emission tomography (PET) radioligands using the copper-mediated 18F-fluorination of aryl boron reagents with 18F-fluoride as a model reaction. This approach is based on a study examining how the presence of heterocycles commonly used in drug development affects the efficiency of 18F-fluorination for a representative aryl boron reagent, and on the labeling of more than 50 (hetero)aryl boronic esters. This set of data allows for the application of this derisking strategy to the successful radiosynthesis of seven structurally complex pharmaceutically relevant heterocycle-containing molecules.
RESUMO
The discovery of non-basic N'-(arylsulfonyl)pyrazoline-1-carboxamidines as 5-HT6 antagonists with unique structural features was recently disclosed. Here we describe how this structural class was further developed by addressing an unexplored interaction site of the 5-HT6 receptor. Compound 13 resulting from this effort is a highly potent and selective 5-HT6 antagonist with improved metabolic stability. It is furthermore devoid of hERG affinity. Despite its modest CNS/plasma ratio, a high brain free fraction ensured substantial exposure to allow for rodent cognition studies.
Assuntos
Pirazóis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Sulfonamidas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/químicaRESUMO
We report that halogenophilic silver(I) triflate permits halogen exchange (halex) nucleophilic (18)F-fluorination of aryl-OCHFCl, -OCF2Br and -SCF2Br precursors under mild conditions. This Ag(I)-mediated process allows for the first time access to a range of (18)F-labeled aryl-OCHF2, -OCF3 and -SCF3 derivatives, inclusive of [(18)F]riluzole. The (18)F-labeling of these medicinally important motifs expands the radiochemical space available for PET applications.
Assuntos
Hidrocarbonetos Fluorados/química , Radioisótopos de Flúor , Estrutura Molecular , Compostos Organometálicos/química , Prata/químicaRESUMO
A visible-light-mediated hydrotrifluoromethylation of unactivated alkenes that uses the Umemoto reagent as the CF(3) source and MeOH as the reductant is disclosed. This effective transformation operates at room temperature in the presence of 5 mol % Ru(bpy)(3)Cl(2); the process is characterized by its operational simplicity and functional group tolerance.
Assuntos
Alcenos/química , Flúor/química , Catálise , Metilação , Estrutura MolecularRESUMO
Positron emission tomography (PET) is a diagnostic nuclear imaging modality that relies on automated protocols to prepare agents labeled with a positron-emitting radionuclide (e.g., 18F). In recent years, new reactions have appeared for the 18F-labeling of agents that are difficult to access by applying traditional radiochemistry, for example those requiring 18F incorporation into unactivated (hetero)arenes. However, automation of these new methods for translation to the clinic has progressed slowly because extensive modification of manual protocols is typically required when implementing novel 18F-labeling methodologies within automated modules. Here, we describe the workflow that led to the automated radiosynthesis of the poly(ADP-ribose) polymerase (PARP) inhibitor [18F]olaparib. First, we established a robust manual protocol to prepare [18F]olaparib from the protected N-[2-(trimethylsilyl)ethoxy]methyl (SEM) arylboronate ester precursor in a 17% ± 5% (n = 15; synthesis time, 135 min) non-decay-corrected (NDC) activity yield, with molar activity (Am) up to 34.6 GBq/µmol. Automation of the process, consisting of copper-mediated 18F-fluorodeboronation followed by deprotection, was achieved on an Eckert & Ziegler Modular-Lab radiosynthesis platform, affording [18F]olaparib in a 6% ± 5% (n = 3; synthesis time, 120 min) NDC activity yield with Am up to 319 GBq/µmol.
Assuntos
Técnicas de Química Sintética/métodos , Cobre/química , Radioisótopos de Flúor/química , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Automação , Ftalazinas/síntese química , Ftalazinas/química , Piperazinas/síntese química , Piperazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Tomografia por Emissão de Pósitrons , Radioquímica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/químicaRESUMO
A simple technique for the preparation of [18F]HF has been developed and applied to the generation of an [18F]FeF species for opening sterically hindered epoxides. This method has been successfully employed to prepare four drug-like molecules, including 5-[18F]fluoro-6-hydroxy-cholesterol, a potential adrenal/endocrine PET imaging agent. This easily automated one-pot procedure produces sterically hindered fluorohydrin PET imaging agents in good yields and high molar activities.
Assuntos
Compostos de Epóxi/química , Fluoretos/química , Hidrocarbonetos Fluorados/química , Ferro/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Radioisótopos de Flúor , Hidrocarbonetos Fluorados/síntese químicaRESUMO
Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.
Assuntos
Radioisótopos de Flúor , Regulação Enzimológica da Expressão Gênica , Ftalazinas , Piperazinas , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cobre/química , Camundongos , Camundongos Endogâmicos BALB C , Ftalazinas/química , Piperazinas/química , Radioquímica , Hipóxia TumoralRESUMO
In this work, we describe the 18F-labeling of α,α-difluoro-α-(aryloxy)acetic acid derivatives and demonstrate that these building blocks are amenable to post-18F-fluorination functionalization. Protodecarboxylation offers a new entry to 18F-difluoromethoxyarene, and the value of this approach is further demonstrated with coupling processes leading to representative 18F-labeled TRPV1 inhibitors and TRPV1 antagonists.
RESUMO
A general method for the copper mediated nucleophilic 123I-iodination of (hetero)aryl boronic esters and acids has been developed. The broad substrate scope of this radiosynthetic approach allows access to [123I]DPA-713, [123I]IMPY, [123I]MIBG and [123I]IPEB that are four commonly used SPECT radiotracers. Our results infer that aryl boronic reagents can now be employed as common precursors for both fluorine-18 and iodine-123 radiolabelling.
RESUMO
[(18)F]FMTEB, [(18)F]FPEB, [(18)F]flumazenil, [(18)F]DAA1106, [(18)F]MFBG, [(18)F]FDOPA, [(18)F]FMT and [(18)F]FDA are prepared from the corresponding arylboronic esters and [(18)F]KF/K222 in the presence of Cu(OTf)2py4. The method was successfully applied using three radiosynthetic platforms, and up to 26 GBq of non-carrier added starting activity of (18)F-fluoride.
Assuntos
Ácidos Borônicos/química , Cobre/química , Ésteres/química , Radioisótopos de Flúor , Halogenação , Tomografia por Emissão de Pósitrons , Catálise , Traçadores RadioativosRESUMO
A new catalytic method to access allylic secondary CF3 products is described. These reactions use the visible light excited Ru(bpy)3Cl2·6H2O catalyst and the Togni or Umemoto reagent as the CF3 source. The photoredox catalytic manifold delivers enantioenriched allylic trifluoromethylated products not accessible under Cu(I) catalysis.
Assuntos
Hidrocarbonetos Fluorados/síntese química , Silanos/química , Catálise , Técnicas de Química Combinatória , Cobre/química , Hidrocarbonetos Fluorados/química , Luz , Estrutura Molecular , Processos Fotoquímicos , EstereoisomerismoRESUMO
The 5-HT(6) receptor (5-HT(6)R) has been in the spotlight for several years regarding CNS-related diseases. We set out to discover novel, neutral 5-HT(6)R antagonists to improve off-target selectivity compared to basic amine-containing scaffolds dominating the field. High-throughput screening identified the N'-(sulfonyl)pyrazoline-1-carboxamidine scaffold as a promising neutral core for starting hit-to-lead. Medicinal chemistry, molecular modeling, small molecule NMR and X-ray crystallography were subsequently applied to optimize the leads into antagonists (compounds 1-49) displaying high 5-HT(6)R affinity with optimal off-target selectivity. Unique structural features include a pseudoaromatic system and an internal hydrogen bond freezing the bioactive conformation. While physicochemical properties and CNS availability were generally favorable, significant efforts had to be made to improve metabolic stability. The optimized structure 42 is an extremely selective, hERG-free, high-affinity 5-HT(6)R antagonist showing good human in vitro metabolic stability. Rat pharmacokinetic data were sufficiently good to enable further in vivo profiling.