Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Rapid Commun Mass Spectrom ; 34 Suppl 4: e8610, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31677354

RESUMO

RATIONALE: The activity of the glucocorticoid activating enzyme 11ß-hydroxysteroid dehydrogenase type-1 (11ßHSD1) is altered in diseases such as obesity, inflammation and psychiatric disorders. In rodents 11ßHSD1 converts inert 11-dehydrocorticosterone (11-DHC) into the active form, corticosterone (CORT). A sensitive, specific liquid chromatography/tandem mass spectrometry method was sought to simultaneously quantify total 11-DHC and total and free CORT in murine plasma for simple assessment of 11ßHSD1 activity in murine models. METHODS: Mass spectrometry parameters were optimised and a method for the chromatographic separation of CORT and 11-DHC was developed. Murine plasma was prepared by 10:1 chloroform liquid-liquid extraction (LLE) for analysis. Limits of quantitation (LOQs), linearity and other method criteria were assessed, according to bioanalytical method validation guidelines. RESULTS: Reliable separation of 11-DHC and CORT was achieved using an ACE Excel 2 C18-AR (2.1 × 150 mm; 2 µm) fused core column at 25°C, with an acidified water/acetonitrile gradient over 10 min. Analytes were detected by multiple reaction monitoring after positive electrospray ionisation (m/z 345.1.1 ➔ 121.2, m/z 347.1 ➔ 121.1 for 11-DHC and CORT, respectively). The LOQs were 0.25 and 0.20 ng/mL for 11-DHC and CORT, respectively. CONCLUSIONS: This LC/MS method is suitable for the reliable analysis of 11-DHC and CORT following simple LLE of murine plasma, bringing preclinical analysis in line with recommendations for clinical endocrinology and biochemistry.


Assuntos
Cromatografia Líquida/métodos , Corticosterona/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Corticosterona/sangue , Corticosterona/química , Corticosterona/isolamento & purificação , Limite de Detecção , Modelos Lineares , Extração Líquido-Líquido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
2.
Brain Behav Immun ; 69: 223-234, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29162555

RESUMO

Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11ß-hydroxysteroid dehydrogenase type-1 (11ß-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11ß-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11ß-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11ß-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11ß-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Inflamação/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo
3.
Bioinformation ; 20(6): 665-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131539

RESUMO

The fracture strength of implant supported zirconia-titanium base (Zi-Ti) base restorations with and without modification of submucosal cervical contour is of interest to dentists. 80 zirconia specimens were adjusted onto the Ti-base. One category consisted of specimens that underwent modification. Other category consisted of abutments without modification. There was polishing and recon touring at the interface of Zi-Ti base in cervical regions. Using the universal testing apparatus fracture resistance was assessed for every sample in every category in Newtons (N). The fracture strength of abutments with modification ranged between 4465.79 - 6523.50 N with mean value of 5604.24 ± 497.62 N. On the other hand, values of fracture strength varied between 5511.42 - 7064.33 N. in abutments without modification with mean fracture strength values of 6265.95 ± 331.61. It was observed that the fracture strength was lesser in abutments that underwent modification.

4.
Metabolism ; 133: 155240, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697299

RESUMO

INTRODUCTION: Non-coding genetic variation at TCF7L2 is the strongest genetic determinant of type 2 diabetes (T2D) risk in humans. TCF7L2 encodes a transcription factor mediating the nuclear effects of WNT signaling in adipose tissue (AT). In vivo studies in transgenic mice have highlighted important roles for TCF7L2 in adipose tissue biology and systemic metabolism. OBJECTIVE: To map the expression of TCF7L2 in human AT, examine its role in human adipose cell biology in vitro, and investigate the effects of the fine-mapped T2D-risk allele at rs7903146 on AT morphology and TCF7L2 expression. METHODS: Ex vivo gene expression studies of TCF7L2 in whole and fractionated human AT. In vitro TCF7L2 gain- and/or loss-of-function studies in primary and immortalized human adipose progenitor cells (APCs) and mature adipocytes (mADs). AT phenotyping of rs7903146 T2D-risk variant carriers and matched controls. RESULTS: Adipose progenitors (APs) exhibited the highest TCF7L2 mRNA abundance compared to mature adipocytes and adipose-derived endothelial cells. Obesity was associated with reduced TCF7L2 transcript levels in whole subcutaneous abdominal AT but paradoxically increased expression in APs. In functional studies, TCF7L2 knockdown (KD) in abdominal APs led to dose-dependent activation of WNT/ß-catenin signaling, impaired proliferation and dose-dependent effects on adipogenesis. Whilst partial KD enhanced adipocyte differentiation, near-total KD impaired lipid accumulation and adipogenic gene expression. Over-expression of TCF7L2 accelerated adipogenesis. In contrast, TCF7L2-KD in gluteal APs dose-dependently enhanced lipid accumulation. Transcriptome-wide profiling revealed that TCF7L2 might modulate multiple aspects of AP biology including extracellular matrix secretion, immune signaling and apoptosis. The T2D-risk allele at rs7903146 was associated with reduced AP TCF7L2 expression and enhanced AT insulin sensitivity. CONCLUSIONS: TCF7L2 plays a complex role in AP biology and has both dose- and depot-dependent effects on adipogenesis. In addition to regulating pancreatic insulin secretion, genetic variation at TCF7L2 might also influence T2D risk by modulating AP function.


Assuntos
Tecido Adiposo , Diabetes Mellitus Tipo 2 , Proteína 2 Semelhante ao Fator 7 de Transcrição , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Predisposição Genética para Doença , Humanos , Metabolismo dos Lipídeos , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
5.
Nat Commun ; 11(1): 2797, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493999

RESUMO

Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Distribuição da Gordura Corporal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Trombospondinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/genética , Adulto , Alelos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Células-Tronco/metabolismo , Trombospondinas/genética , Relação Cintura-Quadril , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Nat Commun ; 9(1): 4525, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375380

RESUMO

Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation. Disease tolerance mechanisms counter these negative effects without decreasing pathogen load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones confer disease tolerance and protect against early death, independently of parasitemia. Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore, without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection. This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypoglycemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead, they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby contributing to tolerance.


Assuntos
Glândulas Suprarrenais/metabolismo , Encéfalo/imunologia , Citocinas/imunologia , Hormônios/imunologia , Hipoglicemia/imunologia , Fígado/imunologia , Pulmão/imunologia , Malária/imunologia , Glândulas Suprarrenais/imunologia , Adrenalectomia , Animais , Glicemia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Corticosterona/imunologia , Corticosterona/metabolismo , Citocinas/efeitos dos fármacos , Dexametasona/farmacologia , Modelos Animais de Doenças , Epinefrina/imunologia , Epinefrina/metabolismo , Glucocorticoides/imunologia , Glucocorticoides/farmacologia , Glicogênio/metabolismo , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Inflamação , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Camundongos , Mineralocorticoides/imunologia , Mineralocorticoides/metabolismo , Norepinefrina/imunologia , Norepinefrina/metabolismo , Plasmodium berghei , Plasmodium chabaudi , Taxa de Sobrevida
7.
Acta Parasitol ; 62(3): 699, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-30666618

RESUMO

should be corrected as follows:DOI: 10.1515/ap-2017-0045© W. Stefanski Institute of Parasitology, PASActa Parasitologica, 2017, 62(2), 382-385; ISSN 1230-2821.

8.
Acta Parasitol ; 62(2): 382-385, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28426402

RESUMO

Two species of parasitic nematodes collected from the intestine of Brook's House Gecko, Hemidactylus brooki and American cockroach, Periplaneta americana L. The parasites were identified as Thelandros scleratus and Thelastoma icemi by PCR amplification method. Subsequently, sequence analysis of mt cox1 (504 and 540 bp) for T. scleratus and T. icemi respectively revealed that these sequences showed maximum similarity of 90% (in case of T. scleratus), 77% (in case of T. icemi), to nematode sequences available on GenBank. To our knowledge, no cox1 sequence is available for both the species of family Pharyngodonidae and Thelastomatidae. This study represents the first mitochondrial DNA characterization of both species.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Mitocôndrias/enzimologia , Nematoides/genética , Animais , DNA Mitocondrial/genética , Lagartos/parasitologia , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/veterinária , Especificidade da Espécie
9.
PLoS One ; 8(9): e75874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086653

RESUMO

11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) converts inert glucocorticoids into active forms, thereby increasing intracellular glucocorticoid levels, important to restrain acute inflammation. 11ß-HSD1 is induced by pro-inflammatory cytokines in a variety of cells. Here, we show 11ß-HSD1 expression in human A549 epithelial cells is increased by pro-inflammatory cytokines (IL-1α/TNFα) via the P2 promoter of the HSD11B1 gene. Inhibition of p38 MAPK attenuated the pro-inflammatory cytokine induction of mRNA encoding 11ß-HSD1 as well as that encoding C/EBPß. IL-1α/TNFα-induced phosphorylation of C/EBPß at Thr235 was also attenuated by p38 MAPK inhibition suggesting involvement of a p38 MAPK-C/EBPß pathway. siRNA-mediated knock-down of C/EBPß and NF-κB/RelA implicated both transcription factors in the IL-1α/TNFα induction of HSD11B1 mRNA. Transient transfections of HSD11B1 promoter-reporter constructs identified the proximal region of the P2 promoter of HSD11B1 as essential for this induction. IL-1α increased binding of C/EBPß to the HSD11B1 P2 promoter, but this was not observed for NF-κB/RelA, suggesting indirect regulation by NF-κB/RelA. Ectopic expression of mutant chicken C/EBPß constructs unable to undergo phosphorylation at the threonine equivalent to Thr235 attenuated the IL-1α-induction of HSD11B1, whereas mimicking constitutive phosphorylation of Thr235 (by mutation to aspartate) increased basal expression of HSD11B1 mRNA without affecting IL-1α-induced levels. These data clearly demonstrate a role for both C/EBPß and NF-κB/RelA in the pro-inflammatory cytokine induction of HSD11B1 in human epithelial cells and show that p38 MAPK-induced phosphorylation of C/EBPß at Thr235 is critical in this.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT , Linhagem Celular Tumoral , Galinhas , Glucocorticoides/metabolismo , Humanos , Ligases/metabolismo , NF-kappa B/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA