Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 555(7697): 529-533, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539635

RESUMO

In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/citologia , Padronização Corporal , Citocininas/metabolismo , Difusão , Endoderma/citologia , Endoderma/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Endoderma/anatomia & histologia , Ácidos Indolacéticos/metabolismo , Meristema/anatomia & histologia , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Células Vegetais/metabolismo
2.
Nature ; 559(7714): E9, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925940

RESUMO

In this Letter, owing to a copying error in Illustrator, the two centre panels in Extended Data Fig. 7a were identical. This error has been corrected online. The old, incorrect Extended Data Fig. 7 is shown in the Supplementary Information to this Amendment for transparency. Some typos ('occurence') in Figs. 1, 2 and 3 have also been corrected and the publication details for ref. 32 have been added.

3.
Genes Dev ; 30(4): 471-83, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883363

RESUMO

To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.


Assuntos
Arabidopsis/fisiologia , Divisão Celular , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Técnicas de Ablação , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Comunicação Celular , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Transporte Proteico , Transdução de Sinais
4.
J Cell Sci ; 132(3)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635445

RESUMO

During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.


Assuntos
Bryopsida/genética , Citocinese/genética , Regulação da Expressão Gênica de Plantas , Microtúbulos/metabolismo , Proteínas de Plantas/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/metabolismo , Bryopsida/ultraestrutura , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Inativação Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Proteínas de Plantas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Vermelha Fluorescente
6.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29361538

RESUMO

Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants.


Assuntos
Imageamento Tridimensional/métodos , Luz , Plantas/anatomia & histologia , Microfluídica , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo
7.
Development ; 144(19): 3578-3589, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851711

RESUMO

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Homeostase , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia , Apoptose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Floema/citologia , Floema/efeitos dos fármacos , Floema/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/metabolismo
8.
New Phytol ; 225(5): 1945-1955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639220

RESUMO

During land colonization, plants acquired a range of body plan adaptations, of which the innovation of three-dimensional (3D) tissues increased organismal complexity and reproductivity. In the moss, Physcomitrella patens, a 3D leafy gametophore originates from filamentous cells that grow in a two-dimensional (2D) plane through a series of asymmetric cell divisions. Asymmetric cell divisions that coincide with different cell division planes and growth directions enable the developmental switch from 2D to 3D, but insights into the underlying mechanisms coordinating this switch are still incomplete. Using 2D and 3D imaging and image segmentation, we characterized two geometric cues, the width of the initial cell and the angle of the transition division plane, which sufficiently distinguished a gametophore initial cell from a branch initial cell. These identified cues were further confirmed in gametophore formation mutants. The identification of a fluorescent marker allowed us to successfully predict the gametophore initial cell with > 90% accuracy before morphological changes, supporting our hypothesis that, before the transition division, parental cells of the gametophore initials possess different properties from those of the branch initials. Our results suggest that the cell fate decision of the initial cell is determined in the parental cell, before the transition division.


Assuntos
Bryopsida , Bryopsida/genética , Diferenciação Celular , Sinais (Psicologia)
9.
Plant Cell Physiol ; 59(3): 469-486, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309666

RESUMO

Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-ß-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Germinação/genética , Mutação com Perda de Função , Pressão Osmótica/efeitos dos fármacos , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato , Fosfoinositídeo Fosfolipase C/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
10.
Plant Cell Physiol ; 58(7): 1196-1207, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158855

RESUMO

Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.


Assuntos
Arabidopsis/metabolismo , Diglicerídeos/metabolismo , Arabidopsis/citologia , Técnicas Biossensoriais , Membrana Celular/metabolismo , Células Cultivadas , Citocinese , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Ésteres de Forbol/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Domínios Proteicos , Proteína Quinase C/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Rede trans-Golgi/metabolismo
11.
Plant Cell ; 26(5): 2114-2128, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24876254

RESUMO

Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning.

12.
Nature ; 473(7347): 380-3, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21593871

RESUMO

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Biopolímeros/química , Biopolímeros/metabolismo , Difusão , Espaço Extracelular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Dados de Sequência Molecular , Família Multigênica , Ligação Proteica
13.
Plant Physiol ; 165(4): 1709-1722, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920445

RESUMO

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

14.
Curr Opin Plant Biol ; 74: 102370, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37121154

RESUMO

The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Divisão Celular , Raízes de Plantas/metabolismo , Forma Celular , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo
15.
Quant Plant Biol ; 2: e13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37077210

RESUMO

By forming lateral roots, plants expand their root systems to improve anchorage and absorb more water and nutrients from the soil. Each phase of this developmental process in Arabidopsis is tightly regulated by dynamic and continuous signalling of the phytohormones cytokinin and auxin. While the roles of auxin in lateral root organogenesis and spatial accommodation by overlying cell layers have been well studied, insights on the importance of cytokinin is still somewhat limited. Cytokinin is a negative regulator of lateral root formation with versatile modes of action being activated at different root developmental zones. Here, we review the latest progress made towards our understanding of these spatially separated mechanisms of cytokinin-mediated signalling that shape lateral root initiation, outgrowth and emergence and highlight some of the enticing open questions.

16.
Nat Plants ; 7(3): 353-364, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686223

RESUMO

Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lipídeos , Domínios Proteicos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Conjuntos de Dados como Assunto , Endoderma/metabolismo , Técnicas de Inativação de Genes , Ácidos Indolacéticos/metabolismo , Lipídeos/genética , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Polimerização , Proteólise
17.
Plant J ; 60(1): 10-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19500308

RESUMO

Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP(2)) rapidly accumulate, with the heat-induced PIP(2) localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP(2) occur within several minutes of temperature increases from ambient levels of 20-25 degrees C to 35 degrees C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP(2) response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP(2) phosphatase. Inhibitor experiments suggest that the PIP(2) response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP(2) increases. These results are discussed in the context of the diverse cellular roles played by PIP(2) and PA, including regulation of ion channels and the cytoskeleton.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Temperatura Alta , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase D/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Células Cultivadas , Oryza/metabolismo , Transdução de Sinais , Nicotiana/metabolismo
18.
Plant J ; 57(2): 356-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18785997

RESUMO

Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fosfatos de Fosfatidilinositol/análise , Raízes de Plantas/citologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Técnicas Biossensoriais , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Luminescentes/análise , Medicago truncatula/citologia , Medicago truncatula/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , Plântula/citologia , Plântula/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
19.
Plant Cell Environ ; 33(4): 655-69, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429089

RESUMO

Polyphosphoinositides (PPIs) became famous for their role in inositol-1,4,5-trisphosphate (InsP3) mediated-Ca(2+) signalling in mammalian cells, generated through signal-activated phospholipase C (PLC) hydrolysis of the minor membrane lipid, phosphatidylinositol-4,5-bisphosphate. For many years, the plant field followed the same paradigm, however, slowly a completely different picture is emerging. Moreover, various novel PPI-signalling compounds have been identified meanwhile, with new functions and targets coming to light. These include lipids phosphorylated at the D3-position of inositol but also water-soluble inositolpolyphosphates (IPPs). For several of them, a relationship to water stress has been reported. This review summarizes the current status of PPIs and IPPs in plants and discusses their potential in osmotic stress signalling and drought.


Assuntos
Fosfatos de Inositol/metabolismo , Osmose , Fosfatos de Fosfatidilinositol/metabolismo , Plantas/metabolismo , Transdução de Sinais , Secas , Estresse Fisiológico , Água/metabolismo
20.
Curr Biol ; 30(22): 4384-4398.e5, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32916110

RESUMO

During post-embryonic development, the pericycle specifies the stem cells that give rise to both lateral roots (LRs) and the periderm, a suberized barrier that protects the plant against biotic and abiotic stresses. Comparable auxin-mediated signaling hubs regulate meristem establishment in many developmental contexts; however, it is unknown how specific outputs are achieved. Using the Arabidopsis root as a model, we show that while LR formation is the main auxin-induced program after de-etiolation, plants with age become competent to form a periderm in response to auxin. The establishment of the vascular cambium acts as the developmental switch required to trigger auxin-mediated periderm initiation. Moreover, distinct auxin signaling components and targets control LR versus periderm formation. Among the periderm-specific-promoting transcription factors, WUSCHEL-RELATED HOMEOBOX 4 (WOX4) and KNAT1/BREVIPEDICELLUS (BP) stand out as their specific overexpression in the periderm results in an increased number of periderm layers, a trait of agronomical importance in breeding programs targeting stress tolerance. These findings reveal that specificity in pericycle stem cell fate is achieved by the integration of developmental cues into distinct regulatory modules.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/metabolismo , Melhoramento Vegetal/métodos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA