Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091667

RESUMO

Olive mill wastewater (OMW) is the aqueous waste derived from the production of virgin olive oil. OMW typically contains a wide range of phenol-type molecules, which are natural antioxidants and/or antibacterials. In order to exploit the bioactive molecules and simultaneously decrease the environmental impact of such a food waste stream, OMW has been intercalated into the host structure of ZnAl layered double hydroxide (LDH) and employed as an integrative filler for the preparation of poly(butylene succinate) (PBS) composites by in situ polymerization. From the view point of the polymer continuous phase as well as from the side of the hybrid filler, an investigation was performed in terms of molecular and morphological characteristics by gel permeation chromatography (GPC) and X-ray diffraction (XRD); also, the thermal and mechanical properties were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMTA). Antibacterial properties have been assessed against a Gram-positive and a Gram-negative bacterium, Staphylococcus aureus and Escherichia coli, respectively, as representatives of potential agents of foodborne illnesses.


Assuntos
Antibacterianos/química , Embalagem de Alimentos/métodos , Hidróxidos/química , Nanocompostos/química , Azeite de Oliva/química , Águas Residuárias/química , Compostos de Zinco/química , Antibacterianos/farmacologia , Butileno Glicóis/química , Polimerização , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos
2.
Molecules ; 23(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340360

RESUMO

This study is devoted to the degradation pathway (bio, photo degradation and photo/bio) of Poly(Lactic acid) PLA polymers by means of melt viscoelasticity. A comparison was made between three PLA polymers with different microstructures (L, D stereoisomers). Biodegradability was determined during composting by burying the polymer films in compost at 58 °C. Melt viscoelasticity was used to assess the molecular evolution of the materials during the composting process. Viscoelastic data were plotted in the complex plane. We used this methodology to check the kinetics of the molecular weight decrease during the initial stages of the degradation, through the evolution of Newtonian viscosity. After a few days in compost, the Newtonian viscosity decreased sharply, meaning that macromolecular chain scissions began at the beginning of the experiments. However, a double molar mass distribution was also observed on Cole⁻Cole plots, indicating that there is also a chain recombination mechanism competing with the chain scission mechanism. PLA hydrolysis was observed by infra-red spectroscopy, where acid characteristic peaks appeared and became more intense during experiments, confirming hydrolytic activity during the first step of biodegradation. During UV ageing, polymer materials undergo a deep molecular evolution. After photo-degradation, lower viscosities were measured during biodegradation, but no significant differences in composting were found.


Assuntos
Biodegradação Ambiental , Poliésteres/química , Polímeros/química , Substâncias Viscoelásticas/química , Cinética , Peso Molecular , Viscosidade
3.
RSC Adv ; 13(14): 9686-9696, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968058

RESUMO

The migration of chemicals from polyurethane (PUR) is a concern in many applications, such as adhesives for food packaging. Low molecular weight catalysts, which are prone to migration, need to be eliminated from PUR, in particular those containing Sn or other metals. This is difficult partly due to many uncertainties of autocatalytic polyaddition between isocyanates and polyols. Hexamethylene and tolylene diisocyanates, HDI and TDI, are often reacted with macrodiols to produce prepolymers for PUR. This study measures isocyanate contents during the polyaddition of HDI and TDI with excess macrodiols. Ester-based macrodiols were reacted between 60 °C and 90 °C using 1 : 0.3 and 1 : 0.5 molar ratios to form OH-terminated prepolymers. Time-temperature superposition (TTS) was used to process the values of unreacted isocyanate fractions from several temperatures. Presumed activation energies and kinetic data scatter implied that polymerization has a distinct initial phase of conversion of unreacted diisocyanate into monofunctional adducts by addition to macrodiols, followed by more complex processes. Utilization of the activation energy from the initial phase and TTS application might allow the prediction of kinetic trends without the need for a large volume of accurate data. Such kinetic mapping should be useful for developing catalyst-free PUR with low levels of migrating chemicals.

4.
Sci Total Environ ; 859(Pt 1): 160150, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36379334

RESUMO

Tire and road wear particles (TRWP) are polymer-based microparticles that are emitted into the environment during tire usage. Growing efforts are currently being made to quantify these emissions, characterize the leachates and assess their environmental impact. This study aimed to investigate the effect of aging on TRWP composition. Cryomilled tire tread particles (CMTTP) and TRWP were exposed for different durations to three aging conditions: accelerated thermal and photochemical aging and natural outdoor aging. Particles were then extracted with cyclohexane/ethanol. The time-concentration profiles of 23 additives and transformation products present in these extracts were determined by UHPLC-HRMS. Several chemicals, such as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) or 1,3-diphenylguanidine (DPG), decayed exponentially under all aging conditions, with half-lives of a few days under artificial photoaging versus dozens of days under pure thermal aging at 60 °C. The natural aging profiles lie between those 2 laboratory aging conditions. Other chemicals, such as 6PPD-quinone, presented bell-shaped concentration profiles within CMTTP when particles were exposed to UV light. 6PPD-quinone reached a maximal concentration within a month under natural aging. For TRWP, the initial load of 6PPD-quinone had already reached a maximum prior to the aging experiments and decreased exponentially under natural aging with a half-life below one month. Pure thermal aging induced a significantly slower decay of 6PPD-quinone within TRWP (half-life of half a year), emphasizing a greater stability and persistence in environmental compartments without light. This study highlighted that the more readily accessible CMTTP could be considered a reasonable proxy of TRWP to investigate the fate of chemicals within rubber particles, at least from a qualitative standpoint. Overall, the concentrations of 20 of the evaluated chemicals decreased by >50 % within 50 days under natural aging.


Assuntos
Benzoquinonas , Guanidinas , Fenilenodiaminas , Borracha , Benzoquinonas/análise , Polímeros/química , Fenilenodiaminas/análise , Guanidinas/análise , Borracha/química , Meia-Vida
5.
N Biotechnol ; 76: 118-126, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257817

RESUMO

As a new generation of green solvents, deep eutectic solvents (DESs) are considered a promising alternative to current harsh organic solvents and find application in many chemical processing methods such as extraction and synthesis. DESs, normally formed by two or more components via various hydrogen bond interactions, offer high potential as medium for biocatalysis reactions where they can improve efficiency by enhancing substrate solubility and the activity and stability of the enzymes. In the current study, the stabilization of Humicola insolens cutinase (HiC) in natural deep eutectic solvents (NADESs) was assessed. The best hydrogen bond donor among sorbitol, xylitol, erythritol, glycerol and ethylene glycol, and the best acceptor among betaine, choline chloride, choline acetate, choline dihydrogen citrate and tetramethylammonium chloride, were selected, evaluating binding energies and molecular orientations through molecular docking simulations, and finally used to prepare NADES aqueous solutions. The effects of component ratio and NADES concentration on HiC thermostability at 90 °C were also investigated. The choline dihydrogen citrate:xylitol, in a 1:1 ratio with a 20 wt% concentration, was selected as the best combination in stabilizing HiC, increasing its half-life three-fold.


Assuntos
Solventes Eutéticos Profundos , Xilitol , Simulação de Acoplamento Molecular , Solventes/química , Colina/química , Citratos
6.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335791

RESUMO

Poly(butylene succinate-co-butylene adipate) (PBSA)-based materials are receiving growing attention in the packaging industry for their promising biodegradability. However, poor gas barrier properties and low durability of biodegradable polymers, such as PBSA, have limited their wide-spread use in food packaging applications. Here we report a scalable solution to improve gas barrier properties and stabilize PBSA against photo-aging, with minimal modifications to the biodegradable polymer backbone by using a commercially available and biocompatible layered double hydroxide (LDH) filler. We investigate and compare the mechanical, gas barrier, and photoaging properties of PBSA and PBSA-LDH nanocomposite films produced on a pilot scale. An increase in rigidity in the nanocomposite was observed upon addition of LDH fillers to neat PBSA, which direct the application of neat PBSA and PBSA-LDH nanocomposite to different food packaging applications. The addition of LDH fillers into neat PBSA improves the oxygen and water vapour barriers for the PBSA based nanocomposites, which increases the attractiveness of PBSA material in food packaging applications. Through changes in the viscoelastic behaviour, we observe an improved photo-durability of photoaged PBSA-LDH nanocomposites compared to neat PBSA. It is clear from our studies that the presence of LDH enhances the lifetime durability and modulates the photodegradation rate of the elaborated biocomposites.

7.
ACS Sustain Chem Eng ; 10(1): 572-581, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036179

RESUMO

In recent years, natural deep eutectic solvents (NADESs) have gained increasing attention as promising nontoxic solvents for biotechnological applications, due to their compatibility with enzymes and ability to enhance their activity. Betaine-based NADESs at a concentration of 25 wt % in a buffered aqueous solution were used as media to inhibit thermal inactivation of POXA1b laccase and its five variants when incubated at 70 and 90 °C. All the tested laccases showed higher residual activity when incubated in NADES solutions, with a further enhancement achieved also for the most thermostable variant. Furthermore, the residual activity of laccases in the presence of NADESs showed a clear advantage over the use of NADESs' individual components. Molecular docking simulations were performed to understand the role of NADESs in the stabilization of laccases toward thermal inactivation, evaluating the interaction between each enzyme and NADESs' individual components. A correlation within the binding energies between laccases and NADES components and the stabilization of the enzymes was demonstrated. These findings establish the possibility of preincubating enzymes in NADESs as a facile and cost-effective solution to inhibit thermal inactivation of enzymes when exposed to high temperatures. This computer-aided approach can assist the tailoring of NADES composition for every enzyme of interest.

8.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363169

RESUMO

Fused deposition modelling is a rapidly growing additive manufacturing technology due to its ability to build functional parts with complex geometries. The mechanical properties of a built part depend on several process parameters. The effect of wood content on the properties of 3D printed parts has been studied. Four types of filaments using poly(butylene succinate-co-adipate) (PBSA) with different reinforcement levels of Typha stem powder 0%, 5%, 10%, and 15% by weight were used for 3D printing. The density of the filaments and parts printed in this study increased with the Typha stem powder content. The thermal stability, mechanical performance, and viscoelastic properties of the different biocomposite filaments and 3D printed objects were analysed. The results show an increase in the crystallisation kinetics and a slight decrease in the thermal stability of the biomaterials. Compared to virgin PBSA FDM filaments, the PBSA biocomposite filament filled with Typha stem powder showed an increase in the tensile strength of the parts and specimens from 2.5 MPa to 8 MPa and in the modulus of elasticity from 160 MPa to 375 MPa, respectively, with additions of 5%, 10%, and 15% by mass. The addition of Typha stem fibres generated an increase in the elastic behaviour and relaxation time of the biomaterial structure, visualised by increases in the values of the viscosity components. The surface morphology reveals a decrease in the porosity of the printed samples.

9.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201232

RESUMO

An eco-friendly solution to produce new material for the material extrusion process is to use quarry waste as filler for biopolymer composites. A quarry waste that is still studied little as a filler for polymer composites is pozzolan. In this study, the optimization of the formulations and processing parameters of composites produced with pozzolan and bio-based polyethylene for 3D printing technology was performed. Furthermore, a precision irrigation system in the form of a drip watering cup was designed, printed, and characterized. The results showed that the presence of the pozzolan acted as a reinforcement for the composite material and improved the cohesion between the layers of the 3D printed objects. Furthermore, the optimization of the process conditions made it possible to print pieces of complex geometry and permeable parts for the control of the water flow rates with an order of magnitude in the range from mL/h to mL/day.

10.
Environ Pollut ; 287: 117656, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426383

RESUMO

Plastic pollution in the world's ocean is one of the major environmental challenges that affects the society today, due to their persistence at sea, adverse consequences to marine life and being potentially harmful to human health. Rivers are now widely recognized as being the major input source of land-based plastic waste into the seas. Despite their key role in plastic transportation, riverine plastic pollution research is still in its infancy and plastic sources, hot-spots and degradation processes in riverine systems are to date poorly understood. In this contribution, we introduce a novel concept of following the aging of polypropylene based post-consumer goods placed in known trapping and mobility zones of macroplastics on a fluvial point bar, which was determined through repeated field surveys of macroplastic densities on this bar. As a proof-of-concept, we followed the degradation of 5 identical plastic butter tubs in 5 different locations on a riverbank and significant differences in the aging of the tubs were observed. The degree of aging of the tubs can to some extent be correlated to their proximity to the main river channel, exposure to natural conditions, such as solar radiation, and its storage time on land.


Assuntos
Monitoramento Ambiental , Plásticos , Manteiga , Humanos , Rios , Resíduos/análise
11.
3D Print Addit Manuf ; 7(6): 311-325, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654669

RESUMO

This article presents the effect analysis of the printing time sequences on the mechanical properties in correlation with the crystallization kinetics and rheological behavior. For this purpose, two printing order of 3D printed samples (printed simultaneously or in sequence) were chosen. In addition, two different infill patterns (line and gyroid) and building directions (horizontal and vertical) have been used. Concerning the polymer filaments, two commercial polylactic acid (PLA 3D870 and PLA 3D850) having different crystallization kinetics were used. The effect of the printing time delay between each layer on the temperature profile and the crystallization evolution was studied using a finite element analysis method simulation. The simulation results show a greater thermal excursion for longer delay times between the layers and with a crystallization degree evolution characterized by a step pattern. Moreover, a major density of crystals appears in the center of the final part. A new approach was adapted to measure the volumetric contraction of the material as a function of the temperature; it was performed with a gap test using a rotational rheometer under static conditions (without external deformation). The normal force measured from the test has shown a faster and higher increase of the contraction for the material with faster crystallization kinetics and with a higher degree of crystallinity. The results concerning the tensile properties show better rigidity for the samples printed in sequence due to the minor time of delay between the deposited layers. The mesostructure of the printed parts was analyzed with an X-ray tomography and a scanning electron microscope. The highest difference is presented from the PLA 3D870 characterized by the highest rate of crystallization resulting in more microvoids compared with the PLA 3D850, due to the less welding cohesion between the layers.

12.
Materials (Basel) ; 14(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374306

RESUMO

A new eco-composite polymer for material extrusion fabrication based on fine fraction pozzolan waste was developed. In addition, the composite materials obtained were used to produce a self-watering pot with complex geometry and a permeable porous part to regulate the passage of water from the storage area to the roots of the plant. Moreover, the system was devised with a cover characterized by a UV-B barrier film. The results have shown the possibility of the 3D printing of complex geometric parts as microporous structures or thin films using a composite based on poly lactic acid (PLA) and pozzolan. The pozzolan has an effect of reinforcement for the composite and at the same time improves the cohesion between the layers of the part during printing.

13.
Int J Biol Macromol ; 163: 919-926, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32650014

RESUMO

The wide-spread use of laccases in industry is often limited due to the enzyme inactivation over time at conditions which exceeds the operating conditions of the enzymes, which are neutral pH and ambient temperatures (30-40 °C). Natural Deep Eutectic Solvents (NADESs) have attracted considerable attention as reaction media in biocatalysis due to their promising compatibility with enzymes and sustainable derivation. In this contribution we demonstrate the possibility of applying aqueous NADESs as incubation media to alter the activity and inhibit thermal inactivation of laccase T. versicolor. For example we show that by incubating 0.25 g L-1 laccase in an aqueous 25 wt% betaine-xylitol based NADES at 70 °C for 15 min, the measured residual activity of laccase is a near 10 fold greater than the measured residual activity of laccase when incubated without the NADES. Moreover, the comparison of the residual activities of the enzyme in presence betaine, xylitol or NADES is clearly showing the advantage of using a NADES over its individual components. The drastic enhancement of the enzyme thermostability by pre-incubation of laccase in NADES media showcases a facile, cheap and green method of boosting the stability laccase.


Assuntos
Produtos Biológicos/química , Lacase/química , Solventes/química , Termodinâmica , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Relação Estrutura-Atividade
14.
Materials (Basel) ; 12(3)2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720761

RESUMO

Orotic acid is a natural heterocyclic compound that acts as a nucleation agent in poly(lactic acid) (PLA). PLA materials with increasing orotic acid content were prepared and characterized. It was found that crystallinity of about 28% was reached with 0.3% content of the agent. Further enhancement in the content of the agent did not provoke any additional significant increase of crystallinity. Subsequently, it was investigated whether the orotic acid content affected photodegradation of PLA and, in the next phase, its biodegradation. The results of rheological measurements showed that the compound slightly accelerates photodegradation of the material, which was accompanied by the cleavage of PLA chains. Previous photodegradation was shown to accelerate the subsequent biodegradation by shortening the lag phase of the process, where the explanation is probably in the reduction of the polymer molecular weight during the photodegradation. Moreover, the presence of orotic acid in both initial and photodegraded samples was found to influence biodegradation positively by shortening the lag phase and increasing the observed maximal rate of the biodegradation.

15.
Beilstein J Nanotechnol ; 10: 684-695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931210

RESUMO

Polybutylene succinate (PBS) nanocomposite materials were prepared using a melt compounding process. The Mg2Al-based PBS nanocomposites, dispersed with inorganic-organic hybrid materials (layered double hydroxides, LDHs), were functionalized with the amino acids L-histidine (HIS) and L-phenylalanine (PHE). The rheological and anti-ultraviolet (anti-UV) properties were investigated and compared to filler-free PBS as well as LDH Mg2Al/nitrate as references. Both organo-modified LDHs exhibited a remarkable chain-extension effect for PBS with an outstanding increase in the zero-shear viscosity η0 for PBS-Mg2Al/PHE (two order of magnitude increase as compared to filler-free PBS). These results were compared to data found in the literature. Moreover, HIS and PHE anions embedded into the LDH structure can successfully prevent the chain scission reactions that usually occur during photo-ageing of PBS under UV radiation exposure. This highlights the outstanding performance of the LDH hybrid materials, and in particular, their application as a polymer chain extender and UV stabilizer for PBS, which can likely be extended to other biodegradable polymers.

16.
Dalton Trans ; 47(9): 3155-3165, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29350728

RESUMO

Nanocomposites based on poly(butylene succinate) (PBS) and hydrotalcite-type anionic clays (HTs) organo-modified with biomolecules characterized by antibacterial and/or antioxidant activities, such as l-ascorbic acid (ASA), phloretic acid (HPP), l-tyrosine (TYR) and l-tryptophan (TRP), have been prepared by in situ polymerization. From XRD analysis and rheology experiments in a molten polymer state, intercalated HT hybrid platelets acting here as a hybrid filler are found to be well dispersed into polymers while providing a chain extension effect on PBS. Moreover, the molecules, when hosted within a HT interlayer gap, do preserve their pristine antibacterial activity, both in HT and in the resulting PBS composites. In particular, under the experimental conditions tested, HT/ASA and HT/TYR present the best combination of both properties (chain extension effect and antibacterial), especially versus E. coli as high as 90 and 97% of inhibition, respectively, using 2.5 wt% hybrid filler only. These findings open future applications for PBS associated with the hybrid HT filler as multifunctional materials in active packaging applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Butileno Glicóis/química , Hidróxidos/química , Polimerização , Polímeros/química , Hidróxido de Alumínio/química , Escherichia coli/efeitos dos fármacos , Hidróxido de Magnésio/química , Nanocompostos/química , Staphylococcus aureus/efeitos dos fármacos
17.
ChemSusChem ; 10(8): 1749-1760, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28134497

RESUMO

Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids.


Assuntos
Compostos de Amônio/química , Ácidos Carboxílicos/química , Celulose/química , Líquidos Iônicos/química , Estrutura Molecular , Solubilidade , Espectrofotometria Infravermelho , Temperatura , Viscosidade
18.
J Agric Food Chem ; 64(28): 5653-61, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27367168

RESUMO

A study was conducted on the biodegradation of aromatic-aliphatic copolyester-based agricultural film in soil at 25 °C. The polymer is known to be biodegradable under composting conditions although rather recalcitrant under mesophilic conditions. The material investigated comprised of the copolyester filled with approximately 25% of starch containing biodegradable plasticizers, and its behavior was compared to the corresponding material without the filler. Mineralization followed by CO2 production merely reached the point of about 6% after 100 days of incubation in the pure copolyester film, whereas the value of around 53% was recorded for the filled copolyester film, which exceeded the readily biodegradable starch filler content in the material by more than 20% and could be accounted for biodegradation of the copolyester. It was suggested that the accelerated copolyester biodegradation in the starch-filled material was most likely explained by the increase in the active surface area of the material available for the microbial attack after biodegradation of the filler. The results were supported by changes in molecular weight distributions of the copolyester and observations made by several microscopic techniques. These findings encourage further development of biodegradable agricultural films based on this material.


Assuntos
Poliésteres/química , Poluentes do Solo/química , Biodegradação Ambiental , Plastificantes/química , Solo/química , Amido/química
19.
Int J Biol Macromol ; 71: 155-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24811902

RESUMO

The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol(-1) was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes.


Assuntos
Biopolímeros/química , Ácido Láctico/química , Bactérias/metabolismo , Biodegradação Ambiental , Hidrólise , Temperatura , Fatores de Tempo
20.
Carbohydr Polym ; 92(1): 214-7, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23218285

RESUMO

Two types of ionic liquids, 1-ethyl-3-methylimidazolim acetate and 1-ethyl-3-methylimidazolium lactate, were employed for the direct processing of pine wood into microfibers. The concentration of 5 wt.% of wood in ionic liquids was rated as the most appropriate for electrospinning. The fibers were electrospun into the collector water bath. The final structure varied from individual microfibers to fiber bundles. It was demonstrated that 1-ethyl-3-methylimidazolium lactate is a powerful solvent and provides the direct transformation of pristine pine wood into the non-wovens.


Assuntos
Celulose/química , Líquidos Iônicos , Microtecnologia , Madeira/química , Imidazóis/química , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Soluções/síntese química , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA