Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619592

RESUMO

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Assuntos
Autofagia , Proliferação de Células , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Tálio , Autofagia/efeitos dos fármacos , Células PC12 , Animais , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Tálio/toxicidade , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Microscopia Eletrônica de Transmissão
2.
J Neurochem ; 155(3): 327-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32248519

RESUMO

Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.


Assuntos
Apoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Adulto , Animais , Apoproteínas/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar , Receptores da Transferrina/administração & dosagem , Transferrina/administração & dosagem
3.
Mol Biol Rep ; 47(5): 3521-3539, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32297292

RESUMO

Bile acids (BAs) are bioactive molecules that have potential therapeutic interest and their derived salts are used in several pharmaceutical systems. BAs have been associated with tumorigenesis of several tissues including the mammary tissue. Therefore, it is crucial to characterize their effects on cancer cells. The objective of this work was to analyse the molecular and cellular effects of the bile salts sodium cholate and sodium deoxycholate on epithelial breast cancer cell lines. Bile salts (BSs) effects over breast cancer cells viability and proliferation were assessed by MTS and BrdU assays, respectively. Activation of cell signaling mediators was determined by immunobloting. Microscopy was used to analyze cell migration, and cellular and nuclear morphology. Interference of membrane fluidity was studied by generalized polarization and fluorescence anisotropy. BSs preparations were characterized by transmission electron microscopy and dynamic light scattering. Sodium cholate and sodium deoxycholate had dual effects on cell viability, increasing it at the lower concentrations assessed and decreasing it at the highest ones. The increase of cell viability was associated with the promotion of AKT phosphorylation and cyclin D1 expression. High concentrations of bile salts induced apoptosis as well as sustained activation of p38 and AKT. In addition, they affected cell membrane fluidity but not significant effects on cell migration were observed. In conclusion, bile salts have concentration-dependent effects on breast cancer cells, promoting cell proliferation at physiological levels and being cytotoxic at supraphysiological ones. Their effects were associated with the activation of kinases involved in cell signalling.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Desoxicólico/farmacologia , Colato de Sódio/farmacologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Desoxicólico/metabolismo , Humanos , Colato de Sódio/metabolismo
4.
Arch Biochem Biophys ; 654: 27-39, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006136

RESUMO

We investigated if wheat (Wh) and sunflower (Sf) plants watering with 1 mM CdCl2 or CuCl2 for 5-15 d during germination and seedling altered membrane fluidity (MF) of their leaves and roots, and if plant pre-treatment with the polyamines (PAs) putrescine (Put), spermidine (Spd) or spermine (Spm) prevented those alterations. Cd impaired Wh and Sf growth, while Cu only affected Sf growth. Cu and Cd increased MF of leaves of both plant species, while Cd decreased MF of Sf roots. Plant treatment for 15 d with 0.1 mM Put, Spd or Spm did not affect plant growth and had opposed effects on the MF of both plants. Finally, Wh and Sf were pre-treated with PAs for either 5 or 10 days followed by metal treatment until day 15. While Put did not affect membrane MF, Spd and Spm decreased it between 5 and 10 d of plant treatment. Together, experimental results demonstrate that during plant development (a) Cd and Cu have noxious effects on plants membrane biophysical properties that could be partially responsible of their toxicity, and (b) this deleterious effect could be only partially prevented by plant pretreatment with the PAs.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Helianthus/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Poliaminas/farmacologia , Plântula/efeitos dos fármacos , Triticum/efeitos dos fármacos , Fenômenos Biofísicos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
5.
Arch Toxicol ; 92(1): 195-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28866748

RESUMO

Thallium (Tl) is a toxic heavy metal that causes oxidative stress both in vitro and in vivo. In this work, we evaluated the production of oxygen (ROS)- and nitrogen (RNS)-reactive species in adherent PC12 (PC12adh) cells exposed for 0.5-6 h to Tl(I) or Tl(III) (10-100 µM). In this system, Tl(I) induced mostly H2O2 generation while Tl(III) induced H2O2 and ONOO·- generation. Both cations enhanced iNOS expression and activity, and decreased CuZnSOD expression but without affecting its activity. Tl(I) increased MnSOD expression and activity but Tl(III) decreased them. NADPH oxidase (NOX) activity remained unaffected throughout the period assessed. Oxidant levels returned to baseline values after 6 h of incubation, suggesting a response of the antioxidant defense system to the oxidative insult imposed by the cations. Tl also affected the glutathione-dependent system: while Tl(III) increased glutathione peroxidase (GPx) expression and activity, Tl(I) and Tl(III) decreased glutathione reductase (GR) expression. However, GR activity was mildly enhanced by Tl(III). Finally, thioredoxin-dependent system was evaluated. Only Tl(I) increased 2-Cys peroxiredoxins (2-Cys Prx) expression, although both cations increased their activity. Tl(I) increased cytosolic thioredoxin reductase (TrxR1) and decreased mitochondrial (TrxR2) expression. Tl(III) had a biphasic effect on TrxR1 expression and slightly increased TrxR2 expression. Despite of this, both cations increased total TrxR activity. Obtained results suggest that in Tl(I)-exposed PC12adh cells, there is an early response to oxidative stress mainly by GSH-dependent system while in Tl(III)-treated cells both GSH- and Trx-dependent systems are involved.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tálio/toxicidade , Tiorredoxinas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Enzimas/metabolismo , Inativação Metabólica/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tálio/administração & dosagem , Tálio/química , Testes de Toxicidade/métodos
6.
Arch Toxicol ; 92(1): 273-288, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28721440

RESUMO

In the recent years, the toxicity of certain divalent cations has been associated with the alteration of intracellular Ca2+ homeostasis. Among other mechanisms, these cations may affect the functionality of certain Ca2+-binding proteins and/or Ca2+ pumps. The plasma membrane calcium pump (PMCA) maintains Ca2+ homeostasis in eukaryotic cells by mediating the efflux of this cation in a process coupled to ATP hydrolysis. The aim of this work was to investigate both in vitro and in cultured cells if other divalent cations (Sr2+, Ba2+, Co2+, Cd2+, Pb2+ or Be2+) could be transported by PMCA. Current results indicate that both purified and intact cell PMCA transported Sr2+ with kinetic parameters close to those of Ca2+ transport. The transport of Pb2+ and Co2+ by purified PMCA was, respectively, 50 and 75% lower than that of Ca2+, but only Co2+ was extruded by intact cells and to a very low extent. In contrast, purified PMCA-but not intact cell PMCA-transported Ba2+ at low rates and only when activated by limited proteolysis or by phosphatidylserine addition. Finally, purified PMCA did not transport Cd2+ or Be2+, although minor Be2+ transport was measured in intact cells. Moreover, Cd2+ impaired the transport of Ca2+ through various mechanisms, suggesting that PMCA may be a potential target of Cd2+-mediated toxicity. The differential capacity of PMCA to transport these divalent cations may have a key role in their detoxification, limiting their noxious effects on cell homeostasis.


Assuntos
Cátions/farmacocinética , Metais/farmacocinética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Transporte Biológico , Cálcio/farmacocinética , Calmodulina/química , Calmodulina/metabolismo , Cátions/toxicidade , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células HEK293 , Humanos , Inativação Metabólica , Metais/toxicidade , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Domínios Proteicos
7.
J Appl Toxicol ; 35(8): 952-69, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25534134

RESUMO

The effects of thallium [Tl(I) and Tl(III)] on the PC12 cell cycle were evaluated without (EGF(-)) or with (EGF(+)) media supplementation with epidermal growth factor (EGF). The following markers of cell-cycle phases were analyzed: cyclin D1 (G1 ); E2F-1, cyclin E and cytosolic p21 (G1 →S transition); nuclear PCNA and cyclin A (S); and cyclin B1 (G2). The amount of cells in each phase and the activation of the signaling cascade triggered by EGF were also analyzed. Tl(I) and Tl(III) (5-100 µM) caused dissimilar effects on PC12 cell proliferation. In EGF(-) cells, Tl(I) increased the expression of G1 →S transition markers and nuclear PCNA, without affecting cyclin A or cyclin B1. In addition to those, cyclin B1 was also increased in EGF(+) cells. In EGF(-) cells, Tl(III) increased the expression of cyclin D1, all the G1→S and S phase markers and cyclin B1. In EGF(+) cells, Tl(III) increased cyclin D1 expression and decreased all the markers of G1 →S transition and the S phase. Even when these cations did not induce the activation of EGF receptor (EGFR) in EGF(-) cells, they promoted the phosphorylation of ERK1/2 and Akt. In the presence of EGF, the cations anticipated EGFR phosphorylation without affecting the kinetics of EGF-dependent ERK1/2 and Akt phosphorylation. Altogether, results indicate that Tl(I) promoted cell proliferation in both EGF(-) and EGF(+) cells. In contrast, Tl(III) promoted the proliferation of EGF(-) cells but delayed it in EGF(+) cells, which may be related to the toxic effects of this cation in PC12 cells.


Assuntos
Ciclo Celular/efeitos dos fármacos , Ciclinas/efeitos dos fármacos , Fator de Crescimento Epidérmico/efeitos dos fármacos , Titânio/toxicidade , Animais , Cátions , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/biossíntese , Proteína Oncogênica v-akt/genética , Oxirredução , Células PC12 , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1828(11): 2646-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23899501

RESUMO

Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-ß-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Proantocianidinas/metabolismo , Western Blotting , Células CACO-2 , Detergentes , Ativação Enzimática , Humanos , Lipossomos , Sistema de Sinalização das MAP Quinases , Transdução de Sinais
9.
Biochim Biophys Acta ; 1830(10): 4692-707, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742824

RESUMO

BACKGROUND: The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). METHODS: Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. RESULTS: Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10µM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. CONCLUSIONS: MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. GENERAL SIGNIFICANCE: Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Cães , Eritrócitos/metabolismo , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Camundongos , Camundongos Knockout , Transdução de Sinais
10.
Environ Toxicol Pharmacol ; 101: 104192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348771

RESUMO

The effects of the exposure of proliferating MDCK cells to thallium [Tl(I) or Tl(III)] on cell viability and proliferation were investigated. Although Tl stopped cell proliferation, the viability was > 95%. After 3 h, two autophagy markers (SQSTM-1 expression and LC3ß localization) were altered, and at 48 h increased expression of SQSTM-1 (60%) and beclin-1 (50-100%) were found. At 24 h, the expression of endoplasmic reticulum (ER) stress markers ATF-6 and IRE-1 were increased in 100% and 150%, respectively, accompanied by XBP-1 splicing and nuclear translocation. At 48 h, major ultrastructure abnormalities were found, including ER enlargement and cytoplasmic vacuolation which was not prevented by protein synthesis inhibition. Increased PHB (85% and 40% for Tl(I) and Tl(III), respectively) and decreased ß-tubulin (45%) expression were found which may be related to the promotion of paraptosis. In summary, Tl(I) and Tl(III) promoted ER stress and probably paraptosis in MDCK cells, impairing their proliferation.


Assuntos
Apoptose , Tálio , Animais , Cães , Tálio/farmacologia , Células Madin Darby de Rim Canino , Estresse do Retículo Endoplasmático , Proliferação de Células , Autofagia
11.
Arch Toxicol ; 86(11): 1667-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22669516

RESUMO

The mechanisms that mediate thallium (Tl) toxicity are still not completely understood. The exposure of rat pheochromocytoma (PC12) cells to Tl(I) or Tl(III) activates both mitochondrial (Tl(I) and Tl(III)) and extrinsic (Tl(III)) pathways of apoptosis. In this work we evaluated the hypothesis that the effects of Tl(III) may be mediated by the damage to lysosomes, where it might be incorporated following the route of iron uptake. PC12 cells exposed for 3 h to 100 µM Tl(III) presented marked endosomal acidification, effect that was absent when cells were incubated in a serum-free medium and that was fully recovered when the latter was supplemented with transferrin. After 6 h of incubation the colocalization of cathepsins D and B with the lysosomal marker Lamp-1 was decreased together with an increase in the total activity of the enzymes. A permanent damage to lysosomes after 18 h of exposure was evidenced from the impairment of acridine orange uptake. Cathepsin D caused the cleavage of pro-apoptotic protein BID that is involved in the activation of the intrinsic pathway of apoptosis. Supporting that, BID cleavage and the activation of caspase 3 by Tl(III) were fully prevented when cells were preincubated with cathepsin D inhibitor (pepstatin A) and only partially prevented when cathepsin B inhibitor (E64d) was used. None of these inhibitors affected BID cleavage or caspase 3 activation in Tl(I)-treated cells. Together, experimental results support the role of Tl(III) uptake by the acidic cell compartments and their involvement in the early steps of Tl(III)-mediated PC12 cells apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Endossomos/metabolismo , Lisossomos/metabolismo , Tálio/toxicidade , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/metabolismo , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Catepsina D/antagonistas & inibidores , Catepsina D/metabolismo , Compartimento Celular/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Células PC12/efeitos dos fármacos , Pepstatinas/farmacologia , Ratos , Tálio/farmacologia
12.
Biochim Biophys Acta ; 1798(9): 1739-49, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20599684

RESUMO

The mechanisms by which lymphocytes recognize and interpret mechanical stimuli and translate these into the triggering of select signaling cascades that are critical for lymphocyte function are still not fully understood. In this work, we investigated the association of mechanical stress (MS)-induced changes in membrane physical properties with changes in cytoskeleton dynamics and cell signaling. In Jurkat T cells, MS was associated with the immediate and transient depolymerization of both beta-tubulin and F-actin. The fluidity of the plasma membrane measured in the hydrophobic region of the bilayer, increased 0.5 min post-MS, recovering the initial value in the following 2 min. This effect was accompanied by the rearrangement of lipids in the lateral phase of the plasma membrane, transient lipid rafts' alteration, and membrane hyperpolarization. The consequent increase in cellular [Ca2+] triggered the activation of the transcription factors NFAT, AP-1, and NF-kappaB. Results indicate that the cytoplasmic membrane, through changes in membrane physical properties, senses MS, and transduces an initial physical stimulus into microtubules rearrangements, Ca2+ mobilization, and the subsequent changes in cell signaling.


Assuntos
Membrana Celular/fisiologia , Estresse Mecânico , Actinas/química , Cálcio/metabolismo , Humanos , Células Jurkat , Fluidez de Membrana , NF-kappa B/fisiologia , Fatores de Transcrição NFATC/fisiologia , Proteína Quinase C/fisiologia , Transdução de Sinais , Fator de Transcrição AP-1/fisiologia , Tubulina (Proteína)/química
13.
Arch Biochem Biophys ; 501(1): 23-30, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20388486

RESUMO

The benefits of flavonoids on human health are very often ascribed to their potential ability to act diminishing free radical steady state concentration in biological systems providing antioxidant protection. This is an assumption based on the chemical structures of flavonoids that support their capacity to scavenge free radicals and chelate redox-active metals. In this paper we will use thermodynamic and kinetic approaches to analyze the interactions of flavonoids with biological material and from there, extrapolate the physiological relevance of their antioxidant actions. Thermodynamic analysis predicts that both, scavenging of oxygen-derived radicals and the sequestration of redox-active metals are energetically favored. Nevertheless, the actual concentrations reached by flavonoids in most animal and human tissues following dietary ingestion are incompatible with the kinetic requirements necessary to reach reaction rates of physiological relevance. This incompatibility becomes evident when compared to other antioxidant compounds, e.g. alpha-tocopherol (vitamin E), ascorbate (vitamin C), and glutathione. Alternatively, lipid-flavonoid and protein-flavonoid interactions can indirectly mediate a decrease in oxidant (free radical) production and/or oxidative damage to both cell and extracellular components. The final mechanisms mediating the antioxidant actions of flavonoid will be determined by their actual concentration in the tissue under consideration.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Radicais Livres/metabolismo , Alimento Funcional , Humanos , Técnicas In Vitro , Cinética , Lipídeos de Membrana/metabolismo , Metais/metabolismo , Ligação Proteica , Termodinâmica
14.
Neurotox Res ; 38(2): 287-298, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468422

RESUMO

Monovalent thallium (Tl+) is a cation that can exert complex neurotoxic patterns in the brain by mechanisms that have yet to be completely characterized. To learn more about Tl+ toxicity, it is necessary to investigate its major effects in vivo and its ability to trigger specific signaling pathways (such as the antioxidant SKN-1 pathway) in different biological models. Caenorhabditis elegans (C. elegans) is a nematode constituting a simple in vivo biological model with a well-characterized nervous system, and high genetic homology to mammalian systems. In this study, both wild-type (N2) and skn-1 knockout (KO) mutant C. elegans strains subjected to acute and chronic exposures to Tl+ [2.5-35 µM] were evaluated for physiological stress (survival, longevity, and worm size), motor alterations (body bends), and biochemical changes (glutathione S-transferase regulation in a gst-4 fluorescence strain). While survival was affected by Tl+ in N2 and skn-1 KO (worms lacking the orthologue of mammalian Nrf2) strains in a similar manner, the longevity was more prominently decreased in the skn-1 KO strain compared with the wild-type strain. Moreover, chronic exposure led to a greater compromise in the longevity in both strains compared with acute exposure. Tl+ also induced motor alterations in both skn-1 KO and wild-type strains, as well as changes in worm size in wild-type worms. In addition, preconditioning nematodes with the well-known antioxidant S-allylcysteine (SAC) reversed the Tl+-induced decrease in survival in the N2 strain. GST fluorescent expression was also decreased by the metal in the nematode, and recovered by SAC. Our results describe and validate, for the first time, features of the toxic pattern induced by Tl+ in an in vivo biological model established with C. elegans, supporting an altered redox component in Tl+ toxicity, as previously described in mammal models. We demonstrate that the presence of the orthologous SKN-1 pathway is required for worms in evoking an efficient antioxidant defense. Therefore, the nematode represents an optimal model to reproduce mammalian Tl+ toxicity, where toxic mechanisms and novel therapeutic approaches of clinical value may be successfully pursued.


Assuntos
Antioxidantes/farmacologia , Tamanho Corporal/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Cisteína/análogos & derivados , Proteínas de Ligação a DNA/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Fatores de Transcrição/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Int J Androl ; 32(4): 360-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18399983

RESUMO

The fertilizing potential of human spermatozoa relies on their ability to capacitate as they travel through the female reproductive tract. During this process, cholesterol is released from the plasma membrane, altering its architecture and dynamics. Using ISolate gradients, we obtained high (L90)- and low (L45)-quality spermatozoa from asthenozoospermic human semen samples. We tested the hypothesis that the lower fertilizing ability of asthenozoospermic L90 cells could be related to a lower ability to increase their membrane fluidity during capacitation. We assessed two sets of fluorescent probes: (i) DPH, TMA-DPH and PA-DPH which senses the hydrophobic core, cytosolic and exofacial leaflets of the bilayer, respectively and (ii) Laurdan, sensitive to the amount of water molecules intercalated between lipid moieties of the membrane (membrane hydration). Before capacitation, membrane fluidity of asthenozoospermic sperm populations was similar to the corresponding fractions of normozoospermic cells when evaluated with DPH, TMA-DPH or PA-DPH. Asthenozoospermic whole samples displayed lower plasma membrane hydration than normozoospermic cells as evidenced with Laurdan. After capacitation, asthenozoospermic L45 and L90 cells failed to increase their membrane fluidity in opposition to normozoospermic cells. Interestingly, membrane hydration significantly correlated with the main sperm motion parameters analysed, being a low membrane hydration associated with poor sperm movement. These results show that low-motility spermatozoa are unable to respond to capacitation with the necessary changes in membrane fluidity. This defect in sperm plasma membrane rheology may be responsible for their poor functional quality and low fertilizing ability.


Assuntos
Astenozoospermia/patologia , Membrana Celular/patologia , Fluidez de Membrana , Capacitação Espermática , Espermatozoides/patologia , 2-Naftilamina/análogos & derivados , Adulto , Astenozoospermia/metabolismo , Estudos de Casos e Controles , Membrana Celular/metabolismo , Difenilexatrieno/análogos & derivados , Corantes Fluorescentes , Humanos , Lauratos , Masculino , Microscopia de Fluorescência , Reologia , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Fatores de Tempo , Água/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(11): 1644-1655, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421180

RESUMO

Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The "PUFA index" -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Tetrahymena thermophila/enzimologia , Temperatura Baixa , Resposta ao Choque Frio , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Técnicas de Silenciamento de Genes , Fosfolipídeos/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/fisiologia , Triterpenos/metabolismo
17.
Arch Toxicol ; 82(11): 789-802, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18668223

RESUMO

The fact that aluminium (Al) and lead (Pb) are both toxic metals to living organisms, including human beings, was discovered a long time ago. Even when Al and Pb can reach and accumulate in almost every organ in the human body, the central nervous system is a particular target of the deleterious effects of both metals. Select human population can be at risk of Al neurotoxicity, and Al is proposed to be involved in the etiology of neurodegenerative diseases. Pb is a widespread environmental hazard, and the neurotoxic effects of Pb are a major public health concern. In spite of the numerous efforts and the accumulating evidence in this area of research, the mechanisms of Al and Pb neurotoxicity are still not completely elucidated. This review will particularly address the involvement of oxidative stress, membrane biophysics alterations, deregulation of cell signaling, and the impairment of neurotransmission as key aspects involved Al and Pb neurotoxicity.


Assuntos
Alumínio/toxicidade , Encéfalo/efeitos dos fármacos , Chumbo/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Food Funct ; 8(8): 2915-2923, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28740990

RESUMO

An increased permeability of the intestinal barrier is proposed as a major event in the pathophysiology of conditions characterized by chronic gut inflammation. This study investigated the capacity of pure anthocyanins (AC), and berry and rice extracts containing different types and amounts of AC, to inhibit tumor necrosis alpha (TNFα)-induced permeabilization of Caco-2 cell monolayers. Caco-2 cells differentiated into intestinal epithelial cell monolayers were incubated in the absence/presence of TNFα, with or without the addition of AC or AC-rich plant extracts (ACRE). AC and ACRE inhibited TNFα-induced loss of monolayer permeability as assessed by changes in transepithelial electrical resistance (TEER) and paracellular transport of FITC-dextran. In the range of concentrations tested (0.25-1 µM), O-glucosides of cyanidin, and delphinidin, but not those of malvidin, peonidin and petunidin protected the monolayer from TNFα-induced decrease of TEER and increase of FITC-dextran permeability. Cyanidin and delphinidin acted by mitigating TNFα-triggered activation of transcription factor NF-κB, and downstream phosphorylation of myosin light chain (MLC). The protective actions of the ACRE on TNFα-induced TEER increase was positively correlated with the sum of cyanidins and delphinidins (r2 = 0.83) content in the ACRE. However, no correlation was observed between TEER and ACRE total AC, malvidin, or peonidin content. Results support a particular capacity of cyanidins and delphinidins in the protection of the intestinal barrier against inflammation-induced permeabilization, in part through the inhibition of the NF-κB pathway.


Assuntos
Antocianinas/farmacologia , Substâncias Protetoras/farmacologia , Junções Íntimas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Humanos , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Junções Íntimas/imunologia , Fator de Necrose Tumoral alfa/genética
19.
Toxicology ; 207(3): 501-10, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15664276

RESUMO

The possibility that Tl(OH)3, the main Tl3+ specie present in water solutions, could interfere with the normal functioning of the glutathione-dependent antioxidant defense system was investigated. For this purpose, we used both the purified components of this system and rat brain cytosolic fractions. Tl(OH)3 (1-25 microM) significantly decreased the content of reduced glutathione (GSH) in both experimental systems, caused by GSH oxidation. In the same range of concentrations Tl(OH)3 inhibited glutathione peroxidase (GPx) activity in both models, using cumene hydroperoxide as the substrate. No alterations in the capacity of GPx activity to metabolize H2O2 were observed. Both in purified GR as well as in the cytosolic fraction, Tl(OH)3 (1-5 microM) inhibited GR activity, with a partial recovery of the activity at higher concentrations. While Tl(OH)3 inhibited the GR diaphorase activity of purified GR, in a concentration (1-25 microM) dependent manner, this effect was only observed in the cytosolic fractions at the highest concentration assessed (25 microM). Results indicate that, similarly to previous findings for Tl+ and Tl3+, Tl(OH)3 also alters the glutathione-dependent antioxidant defense system. The observed alterations of this important antioxidant protective pathway by the major Tl3+ specie in water solutions could be one mechanism involved in the oxidative stress associated to Tl-intoxication.


Assuntos
Citosol/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Glutationa/metabolismo , Tálio/toxicidade , Animais , Encéfalo , Química Encefálica , Catalase/metabolismo , Fracionamento Celular , Citosol/enzimologia , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , NADP/metabolismo , Oxirredução , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
20.
J Agric Food Chem ; 53(12): 5041-8, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15941354

RESUMO

The antioxidant and membrane effects of dimer (Dim) and trimer (Trim) procyanidins isolated from cocoa (Theobroma cacao) (B- and C-bonded) and peanut (Arachis hypogea L.) skin (A-bonded) were evaluated in phosphatidyl choline liposomes. When liposomes were oxidized with a steady source of oxidants, the above dimers and trimers inhibited to a similar extent lipid oxidation in a concentration (0.33-5 microM)-dependent manner. With respect to membrane effects, Dim A1, Dim B, Trim A, and Trim C increased (Dim A1 = Dim B and Trim A = Trim C), while Dim A2 decreased, membrane surface potential. All of the procyanidins tested decreased membrane fluidity as determined by fluorescent probes at the water-lipid interface, an effect that extended into the hydrophobic region of the bilayer. Both dimers and trimers protected the lipid bilayer from disruption by Triton X-100. The magnitude of the protection was Dim A1 > Dim A2 > Dim B and Trim C > Trim A. Thus, dimers and trimers can interact with membrane phospholipids, presumably with their polar headgroup. As a consequence of this interaction, they can provide protection against the attack of oxidants and other molecules that challenge the integrity of the bilayer.


Assuntos
Antioxidantes/farmacologia , Arachis/química , Cacau/química , Membrana Celular/efeitos dos fármacos , Proantocianidinas/farmacologia , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Dimerização , Bicamadas Lipídicas , Peroxidação de Lipídeos/efeitos dos fármacos , Lipossomos/química , Fluidez de Membrana/efeitos dos fármacos , Oxirredução , Proantocianidinas/química , Proantocianidinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA