RESUMO
This paper is primarily concerned with determining and assessing the properties of a cement-based composite material containing large particles of aggregate in digital manufacturing. The motivation is that mixtures with larger aggregate sizes offer benefits such as increased resistance to cracking, savings in other material components (such as Portland cement), and ultimately cost savings. Consequently, in the context of 3D Construction/Concrete Print technology (3DCP), these materials are environmentally friendly, unlike the fine-grained mixtures previously utilized. Prior to printing, these limits must be established within the virtual environment's process parameters in order to reduce the amount of waste produced. This study extends the existing research in the field of large-scale 3DCP by employing coarse aggregate (crushed coarse river stone) with a maximum particle size of 8 mm. The research focuses on inverse material characterization, with the primary goal of determining the optimal combination of three monitored process parameters-print speed, extrusion height, and extrusion width-that will maximize buildability. Design Of Experiment was used to cover all possible variations and reduce the number of required simulations. In particular, the Box-Behnken method was used for three factors and a central point. As a result, thirteen combinations of process parameters covering the area of interest were determined. Thirteen numerical simulations were conducted using the Abaqus software, and the outcomes were discussed.
RESUMO
3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed.