Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
EMBO J ; 39(3): e101625, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31556459

RESUMO

Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/química , Mutação , Fosforilação , Ligação Proteica , Multimerização Proteica
2.
PLoS Genet ; 16(6): e1008894, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32598340

RESUMO

Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromossomos de Plantas/genética , Metilação de DNA , Meiose/genética , Proteínas de Arabidopsis/genética , Pareamento Cromossômico , Segregação de Cromossomos , Troca Genética , Quebras de DNA de Cadeia Dupla , Elementos de DNA Transponíveis/genética , Técnicas de Inativação de Genes , Plantas Geneticamente Modificadas
3.
Plant Physiol ; 178(1): 233-246, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002256

RESUMO

During the leptotene stage of prophase I of meiosis, chromatids become organized into a linear looped array via a protein axis that forms along the loop bases. Establishment of the axis is essential for the subsequent synapsis of the homologous chromosome pairs and the progression of recombination to form genetic crossovers. Here, we describe ASYNAPTIC4 (ASY4), a meiotic axis protein in Arabidopsis (Arabidopsis thaliana). ASY4 is a small coiled-coil protein that exhibits limited sequence similarity with the carboxyl-terminal region of the axis protein ASY3. We used enhanced yellow fluorescent protein-tagged ASY4 to show that ASY4 localizes to the chromosome axis throughout prophase I. Bimolecular fluorescence complementation revealed that ASY4 interacts with ASY1 and ASY3, and yeast two-hybrid analysis confirmed a direct interaction between ASY4 and ASY3. Mutants lacking full-length ASY4 exhibited defective axis formation and were unable to complete synapsis. Although the initiation of recombination appeared to be unaffected in the asy4 mutant, the number of crossovers was reduced significantly, and crossovers tended to group in the distal parts of the chromosomes. We conclude that ASY4 is required for normal axis and crossover formation. Furthermore, our data suggest that ASY3/ASY4 are the functional homologs of the mammalian SYCP2/SYCP3 axial components.


Assuntos
Proteínas de Arabidopsis/genética , Cromossomos de Plantas/genética , Ligases/genética , Meiose/genética , Complexo Sinaptonêmico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Pareamento Cromossômico/genética , Troca Genética/genética , Ligases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Prófase Meiótica I/genética , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica , Complexo Sinaptonêmico/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
PLoS Biol ; 12(8): e1001930, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25116939

RESUMO

Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Troca Genética , Processamento de Proteína Pós-Traducional , Animais , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pareamento Cromossômico , Cromossomos de Plantas/metabolismo , Epistasia Genética , Meiose/genética , Metáfase , Camundongos , Mutação/genética
5.
Plant Cell ; 25(12): 4924-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24363313

RESUMO

During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The homologous-pairing protein2/meiotic nuclear division protein1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases radiation sensitive51 (RAD51) and disrupted meiotic cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Reparo do DNA , Meiose/genética , Fosfotransferases/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromátides/genética , Cromátides/metabolismo , Quebras de DNA de Cadeia Dupla , Modelos Genéticos , Mutação , Fosfotransferases/metabolismo , Estabilidade Proteica , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinases Rec A/fisiologia
6.
PLoS Genet ; 8(7): e1002799, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844245

RESUMO

In numerous species, the formation of meiotic crossovers is largely under the control of a group of proteins known as ZMM. Here, we identified a new ZMM protein, HEI10, a RING finger-containing protein that is well conserved among species. We show that HEI10 is structurally and functionally related to the yeast Zip3 ZMM and that it is absolutely required for class I crossover (CO) formation in Arabidopsis thaliana. Furthermore, we show that it is present as numerous foci on the chromosome axes and the synaptonemal complex central element until pachytene. Then, from pachytene to diakinesis, HEI10 is retained at a limited number of sites that correspond to class I COs, where it co-localises with MLH1. Assuming that HEI10 early staining represents an early selection of recombination intermediates to be channelled into the ZMM pathway, HEI10 would therefore draw a continuity between early chosen recombination intermediates and final class I COs.


Assuntos
Arabidopsis/genética , Troca Genética , Miose/genética , Homologia de Sequência de Aminoácidos , Complexo Sinaptonêmico/genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Plantas/genética , Fertilidade/genética , Recombinação Homóloga , Dados de Sequência Molecular , Proteína 1 Homóloga a MutL , Mutação , Domínios RING Finger/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Leveduras/genética
7.
PLoS Genet ; 5(9): e1000654, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19763177

RESUMO

Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Ensaios de Triagem em Larga Escala/métodos , Meiose/genética , Recombinação Genética , Alelos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Ciclinas/química , Ciclinas/metabolismo , Quebras de DNA de Cadeia Dupla , Éxons/genética , Genes de Plantas , Íntrons/genética , Dados de Sequência Molecular , Mutação/genética , Transporte Proteico , Recombinases/metabolismo , Alinhamento de Sequência
8.
Curr Biol ; 18(18): 1432-7, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18812090

RESUMO

Crossovers (COs) are essential for the completion of meiosis in most species and lead to new allelic combinations in gametes. Two pathways of meiotic crossover formation have been distinguished. Class I COs, which are the major class of CO in budding yeast, mammals, Caenorhabditis elegans, and Arabidopsis, depend on a group of proteins called ZMM and rely on specific DNA structure intermediates that are processed to form COs. We identified a novel gene, SHOC1, involved in meiosis in Arabidopsis. Shoc1 mutants showed a striking reduction in the number of COs produced, a similar phenotype to the previously described Arabidopsis zmm mutants. The early steps of recombination, revealed by DMC1 foci, and completion of synapsis are not affected in shoc1 mutants. Double mutant analysis showed that SHOC1 acts in the same pathway as AtMSH5, a conserved member of the ZMM group. SHOC1 is thus a novel gene required for class I CO formation in Arabidopsis. Sequence similarity studies detected putative SHOC1 homologs in a large range of eukaryotes including human. SHOC1 appears to be related to the XPF endonuclease protein family, which suggests that it is directly involved in the maturation of DNA intermediates that lead to COs.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Fúngicas/genética , Sequência de Aminoácidos , Animais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Sequência Conservada , Troca Genética , DNA Complementar/genética , Fertilidade/genética , Proteínas Fúngicas/química , Humanos , Mamíferos , Meiose , Dados de Sequência Molecular , Saccharomycetales/citologia , Saccharomycetales/genética , Alinhamento de Sequência
9.
PLoS Genet ; 4(12): e1000309, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19096505

RESUMO

In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIalpha/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair -- that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cromátides/metabolismo , Troca Genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fenótipo , Recombinação Genética , Alinhamento de Sequência
10.
PLoS Genet ; 3(5): e83, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17530928

RESUMO

In budding yeast meiosis, the formation of class I interference-sensitive crossovers requires the ZMM proteins. These ZMM proteins are essential in forming a mature synaptonemal complex, and a subset of these (Zip2, Zip3, and Zip4) has been proposed to compose the core of synapsis initiation complexes (SICs). Zip4/Spo22 functions with Zip2 to promote polymerization of Zip1 along chromosomes, making it a crucial SIC component. In higher eukaryotes, synapsis and recombination have often been correlated, but it is totally unknown how these two processes are linked. In this study, we present the characterization of a higher eukaryote SIC component homologue: Arabidopsis AtZIP4. We show that mutations in AtZIP4 belong to the same epistasis group as Atmsh4 and eliminate approximately 85% of crossovers (COs). Furthermore, genetic analyses on two adjacent intervals of Chromosome I established that the remaining COs in Atzip4 do not show interference. Lastly, immunolocalization studies showed that polymerization of the central element of the synaptonemal complex is not affected in Atzip4 background, even if it may proceed from fewer sites compared to wild type. These results reveal that Zip4 function in class I CO formation is conserved from budding yeast to Arabidopsis. On the other hand, and contrary to the situation in yeast, mutation in AtZIP4 does not prevent synapsis, showing that both aspects of the Zip4 function (i.e., class I CO maturation and synapsis) can be uncoupled.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Transporte de Cátions/metabolismo , Pareamento Cromossômico/fisiologia , Troca Genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Dados de Sequência Molecular , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/metabolismo , Transporte Proteico
11.
Curr Biol ; 15(8): 692-701, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15854901

RESUMO

BACKGROUND: Crossovers are essential for the completion of meiosis. Recently, two pathways of crossover formation have been identified on the basis of distinct genetic controls. In one pathway, crossover inhibits the occurrence of another such event in a distance-dependent manner. This phenomenon is known as interference. The second kind of crossover is insensitive to interference. The two pathways function independently in budding yeast. Only interference-insensitive crossovers occur in Schizosaccharomyces pombe. In contrast, only interference-sensitive crossovers occur in Caenorabditis elegans. The situation in mammals and plants remains unclear. Mer3 is one of the genes shown to be required for the formation of interference-sensitive crossovers in Saccharomyces cerevisiae. RESULTS: To unravel the crossover status in the plant Arabidopsis thaliana, we investigated the role of the A. thaliana MER3 gene through the characterization of a series of allelic mutants. All mer3 mutants showed low levels of fertility and a significant decrease (about 75%) but not a total disappearance of meiotic crossovers, with the number of recombination events initiated in the mutants being similar to that in the wild-type. Genetic analyses showed that the residual crossovers in mer3 mutants did not display interference in one set of adjacent intervals. CONCLUSIONS: Mutation in MER3 in Arabidopsis appeared to be specific to recombination events resulting in interference-sensitive crossovers. Thus, MER3 function is conserved from yeast to plants and may exist in other metazoans. Arabidopsis therefore has at least two pathways for crossover formation, one giving rise to interference-sensitive crossover and the other to independently distributed crossovers.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Troca Genética/fisiologia , Meiose/fisiologia , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Cruzamentos Genéticos , Troca Genética/genética , Análise Citogenética , DNA Helicases/genética , DNA Helicases/fisiologia , Análise Mutacional de DNA , Primers do DNA , DNA Complementar/genética , Marcadores Genéticos , Microscopia de Fluorescência , Dados de Sequência Molecular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Front Plant Sci ; 9: 1339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283471

RESUMO

Genetic screens have been crucial for deciphering many important biological processes, including meiosis. In Arabidopsis thaliana, previous forward screens have likely identified almost all the meiotic genes that when mutated lead to a pronounced decrease in fertility. However, the increasing number of genes identified in reverse genetics studies that play crucial roles in meiosis, but do not exhibit strong phenotypes when mutated, suggests that there are still many genes with meiotic function waiting to be discovered. In this study, we produced 897 A. thaliana homozygous mutant lines using Ethyl Methyl Sulfonate (EMS) mutagenesis followed by either single seed descent or haploid doubling. Whole genome sequencing of a subset of lines showed an average of 696 homozygous mutations per line, 195 of which (28%) modify a protein sequence. To test the power of this library, we carried out a forward screen looking for meiotic defects by observing chromosomes at metaphase I of male meiosis. Among the 649 lines analyzed, we identified 43 lines with meiotic defects. Of these, 21 lines had an obvious candidate causal mutation, namely a STOP or splicing site mutation in a gene previously shown to play a role in meiosis (ATM, MLH3, MLH1, MER3, HEI10, FLIP, ASY4, FLIP, PRD2, REC8, FANCL, and PSS1). Interestingly, this was the first time that six of these genes were identified in a forward screen in Arabidopsis (MLH3, MLH1, SGO1, PSS1, FANCL, and ASY4). These results illustrate the potential of this mutant population for screening for any qualitative or quantitative phenotype. Thus, this new mutant library is a powerful tool for functional genomics in A. thaliana. The HEM (Homozygote EMS Mutants) lines are available at the Versailles Arabidopsis stock center.

13.
Science ; 351(6276): 939-43, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26917763

RESUMO

The SPO11 protein catalyzes the formation of meiotic DNA double strand breaks (DSBs) and is homologous to the A subunit of an archaeal topoisomerase (topo VI). Topo VI are heterotetrameric enzymes comprising two A and two B subunits; however, no topo VIB involved in meiotic recombination had been identified. We characterized a structural homolog of the archaeal topo VIB subunit [meiotic topoisomerase VIB-like (MTOPVIB)], which is essential for meiotic DSB formation. It forms a complex with the two Arabidopsis thaliana SPO11 orthologs required for meiotic DSB formation (SPO11-1 and SPO11-2) and is absolutely required for the formation of the SPO11-1/SPO11-2 heterodimer. These findings suggest that the catalytic core complex responsible for meiotic DSB formation in eukaryotes adopts a topo VI-like structure.


Assuntos
Proteínas Arqueais/química , DNA Topoisomerases Tipo II/química , Endodesoxirribonucleases/química , Recombinação Homóloga , Meiose/genética , Methanosarcina/enzimologia , Sulfolobus/enzimologia , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Arqueais/genética , Catálise , Domínio Catalítico , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases/química , DNA Topoisomerases/genética , DNA Topoisomerases Tipo II/genética , Endodesoxirribonucleases/genética , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia Estrutural de Proteína , Técnicas do Sistema de Duplo-Híbrido
14.
Plant Cell ; 21(2): 442-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19223514

RESUMO

We investigated the role of the ubiquitin proteasome system (UPS), which allows proteins to be selectively degraded, during gametophyte development in Arabidopsis thaliana. Three mutant alleles altering the UPS were isolated in the Wassilewskija (Ws) accession: they affect the Regulatory Particle 5a (RPT5a) gene, which (along with RPT5b) encodes one of the six AAA-ATPases of the proteasome regulatory particle. In the heterozygous state, all three mutant alleles displayed 50% pollen lethality, suggesting that RPT5a is essential for male gametophyte development. However, a fourth mutant in the Columbia (Col) accession did not display such a phenotype because the RPT5b Col allele complements the rpt5a defect in the male gametophyte, whereas the RPT5b Ws allele does not. Double rpt5a rpt5b mutants showed a complete male and female gametophyte lethal phenotype in a Col background, indicating that RPT5 subunits are essential for both gametophytic phases. Mitotic divisions were affected in double mutant gametophytes correlating with an absence of the proteasome-dependent cyclinA3 degradation. Finally, we show that RPT5b expression is highly increased when proteasome functioning is defective, allowing complementation of the rpt5a mutation. In conclusion, RPT5 subunits are not only essential for both male and female gametophyte development but also display accession-dependent redundancy and are crucial in cell cycle progression.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/fisiologia , Subunidades Proteicas/fisiologia , Adenosina Trifosfatases/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica , Mitose/genética , Mitose/fisiologia , Dados de Sequência Molecular , Pólen/genética , Pólen/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
15.
EMBO J ; 26(18): 4126-37, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17762870

RESUMO

The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/metabolismo , Fertilidade , Indóis , Dados de Sequência Molecular , Mutação/genética , Pólen/citologia , Ligação Proteica , Recombinação Genética/genética , Saccharomyces cerevisiae/citologia , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
16.
Genes Cells ; 11(6): 615-22, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16716192

RESUMO

Meiotic recombination involves the formation and repair of DNA double-strand breaks (DSB). One of the genes required for DSB formation in the yeast Saccharomyces cerevisiae, Ski8/Rec103, is intriguing because it also plays a role in cytoplasmic RNA metabolism, a function difficult to relate to DSB formation. The meiotic role of Ski8 is conserved in several fungi, but has not been investigated outside this kingdom. We identified the Ski8 homolog in Arabidopsis thaliana and isolated two mutants. We showed that the Arabidopsis Ski8 homolog was required for normal plant development and growth, suggesting a conserved somatic function, but that it was not required for meiotic recombination or progression. The data presented here provide strong evidence that the meiotic role of Ski8 is not conserved in Arabidopsis and sequence analysis suggests that this may also be the case in a range of other species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Meiose , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência Conservada , Troca Genética , Endodesoxirribonucleases , Esterases/genética , Esterases/metabolismo , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
17.
Genome Res ; 16(1): 106-14, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16344568

RESUMO

Crossover (CO) is a key process for the accurate segregation of homologous chromosomes during the first meiotic division. In most eukaryotes, meiotic recombination is not homogeneous along the chromosomes, suggesting a tight control of the location of recombination events. We genotyped 71 single nucleotide polymorphisms (SNPs) covering the entire chromosome 4 of Arabidopsis thaliana on 702 F2 plants, representing 1404 meioses and allowing the detection of 1171 COs, to study CO localization in a higher plant. The genetic recombination rates varied along the chromosome from 0 cM/Mb near the centromere to 20 cM/Mb on the short arm next to the NOR region, with a chromosome average of 4.6 cM/Mb. Principal component analysis showed that CO rates negatively correlate with the G+C content (P = 3x10(-4)), in contrast to that reported in other eukaryotes. COs also significantly correlate with the density of single repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or dispersed repeats. Chromosome 4 has, on average, 1.6 COs per meiosis, and these COs are subjected to interference. A detailed analysis of several regions having high CO rates revealed "hot spots" of meiotic recombination contained in small fragments of a few kilobases. Both the intensity and the density of these hot spots explain the variation of CO rates along the chromosome.


Assuntos
Arabidopsis/genética , Centrômero/genética , Cromossomos de Plantas/genética , Troca Genética/genética , Meiose/genética , Polimorfismo de Nucleotídeo Único , Composição de Bases/genética , Variação Genética , Sequências Repetitivas de Ácido Nucleico/genética
18.
J Cell Sci ; 118(Pt 20): 4621-32, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16176934

RESUMO

The success of the first meiotic division relies (among other factors) on the formation of bivalents between homologous chromosomes, the monopolar orientation of the sister kinetochores at metaphase I and the maintenance of centromeric cohesion until the onset of anaphase II. The meiotic cohesin subunit, Rec8 has been reported to be one of the key players in these processes, but its precise role in kinetochore orientation is still under debate. By contrast, much less is known about the other non-SMC cohesin subunit, Scc3. We report the identification and the characterisation of AtSCC3, the sole Arabidopsis homologue of Scc3. The detection of AtSCC3 in mitotic cells, the embryo lethality of a null allele Atscc3-2, and the mitotic defects of the weak allele Atscc3-1 suggest that AtSCC3 is required for mitosis. AtSCC3 was also detected in meiotic nuclei as early as interphase, and bound to the chromosome axis from early leptotene through to anaphase I. We show here that both AtREC8 and AtSCC3 are necessary not only to maintain centromere cohesion at anaphase I, but also for the monopolar orientation of the kinetochores during the first meiotic division. We also found that AtREC8 is involved in chromosome axis formation in an AtSPO11-1-independent manner. Finally, we provide evidence for a role of AtSPO11-1 in the stability of the cohesin complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Cinetocoros/metabolismo , Meiose , Anáfase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona , Cromossomos de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genoma de Planta , Mutação/genética , Proteínas Nucleares/metabolismo , Fenótipo , Transporte Proteico , Rad51 Recombinase/metabolismo , Recombinação Genética , Coesinas
19.
Plant Cell ; 16(1): 99-113, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14660803

RESUMO

CDC45 is required for the initiation of DNA replication in yeast and cell proliferation in mammals and functions as a DNA polymerase alpha loading factor in Xenopus. We have cloned a CDC45 homolog from Arabidopsis whose expression is upregulated at the G1/S transition and in young meiotic flower buds. One-third of Arabidopsis 35S:CDC45 T1 RNA interference lines are partially to completely sterile, and the proportion of sterile plants is increased by using a dmc1 promoter. T1 plants have decreased levels of the CDC45 transcript and contain 21- to 23-bp RNA fragments specific to the CDC45 gene. T2 transgenic lines, in which small RNA fragments are still present, were used to analyze S-phase entry by 5-bromodeoxyuridine incorporation, which was not altered compared with that in the wild type. However, microarray data show that other cell cycle genes are upregulated or downregulated. T2 plants also have highly reduced fertility. The severity of the phenotype is correlated with the levels of the CDC45 transcript and small RNA fragments. Severe chromosome fragmentation arising during meiosis, which is not the result of a defect in the repair of SPO11-induced double strand breaks, leads to abnormal chromosome segregation and defective pollen and ovule development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Fertilidade/genética , Fertilidade/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Meiose/genética , Meiose/fisiologia , Mitose/genética , Mitose/fisiologia , Mutação , Fenótipo , Pólen/crescimento & desenvolvimento , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Análise de Sequência de DNA
20.
Plant J ; 35(4): 465-75, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904209

RESUMO

Arabidopsis thaliana MEI1 was first described as a gene involved in male meiosis, encoding a short protein showing homology with a human acrosin-trypsin inhibitor. We have isolated a new allele of mei1, and shown that in both mutants male and female meiosis are affected. In both reproductive pathways, meiosis proceeds while chromosomes become fragmented, resulting in aberrant meiotic products and in a strongly reduced fertility. We have shown that the gene mutated in mei1 mutants actually encodes a protein of 972 amino acids that contains five BRCA1 C-terminus (BRCT) domains and is similar to proteins involved in the response to DNA damage and replication blocks in eukaryotes. During meiosis, recombination is initiated by the formation of DNA double strand breaks (DSBs) induced by the protein SPO11. We analysed meiotic chromosome behaviour of the mei1 mutant in a spo11 mutant background and proved that the meiotic fragmentation observed in mei1 mutants was not the consequence of defects in the repair of meiotic DSBs induced by SPO11. We also analysed the effect of mei1 on the mitotic cell cycle but could not detect any sensitivity of mei1 seedlings to DNA-damaging agents like gamma-rays or UV. Therefore, MEI1 is a BRCT-domain-containing protein that could be specific to the meiotic cell cycle and that plays a crucial role in some DNA repair events independent of SPO11 DSB recombination repair.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Dano ao DNA , Reparo do DNA , Meiose/fisiologia , Alelos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteína BRCA1/química , Proteínas de Transporte/química , DNA de Plantas/fisiologia , Proteínas de Ligação a DNA , Fertilidade , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares , Fenótipo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA