Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Small ; : e2406507, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412118

RESUMO

Persistent luminescence (PersL) is widely used for near infrared (NIR-I, 650-950 nm) imaging as they allow getting images without background. Bio-imaging in the second shortwave-infrared region SWIR-II (NIR-II, 1000-1400 nm) is less widespread but is growing as it offers the advantages of low photon scattering, increased in vivo penetration depth, and improved imaging clarity. In this work, the preparation and the complete optical properties of a new material is reported, Zn1.33Ga1.33Ni0.005Cr0.005Sn0.33O3.995 (ZGSO:Cr3+, Ni2+) able of emitting in both deep-red/NIR-I and SWIR (NIR-II) and shows its potential in bioimaging. ZGSO:Cr3+, Ni2+ can be excited using different sources such as X-rays, UV, and visible light to emit persistent signals in dual biological windows (dual-BW). By integrating an energy transfer process from Cr3+ to Ni2+ within this newly synthesized material, the influence of co-dopants on signal intensity and emission wavelengths is sought to explore. PersL at ≈700 nm (NIR-I) and ≈1300 nm (NIR-II) have been tested in preliminary bioimaging experiments using different protocols, allowing signal detection with good spatial resolution and depth sensitivity. The dual-BW PersL imaging strategy expands the toolbox for highly accurate analysis and has, for the first time, allowed access to accurately high-resolution sensing, and tracing.

2.
Small ; : e2402352, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126362

RESUMO

Mechanoluminescence (ML) phosphors have found various promising utilizations such as in non-destructive stress sensing, anti-counterfeiting, and bio stress imaging. However, the reported NIR MLs have predominantly been limited to bulky particle size and weak ML intensity, hindering the further practical applications. For this regard, a nano-sized ZnGa2O4: Cr3+ NIR ML phosphor is synthesized by hydrothermal method. By improving the synthesis method and regulating the chemical composition, the NIR ML (600-1000 nm) intensity of such nano-materials has been further enhanced about four times. The reasons for the ML performance difference between micro-/nano- sized phosphors also have been preliminarily analyzed. Additionally, this work probes into the ML mechanism deeply in traps' aspect from band structure and defect formation energy, which can supply significant references for a new approach to develop efficient NIR ML nanoparticles. Finally, due to excellent tissue penetration capability, nano-sized ZnGa2O4:Cr3+ NIR ML phosphor shows great potential applications in biomedical fields such as for the detection of clinical oral diseases.

3.
Opt Lett ; 49(8): 2093-2096, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621084

RESUMO

A Tm:LiYF4 laser operating on the 3H4 → 3H5 transition is embedded in a high-power diode-pumped Nd:ASL laser for intracavity upconversion pumping at 1.05 µm. This leads to a record-high output power at 2.3 µm for any bulk thulium laser pumped by an upconversion process. The continuous-wave Tm:LiYF4 laser delivers 1.81 W at 2.3 µm for 32 W of laser-diode pump power, making this kind of pumping competitive with direct diode pumping. The intracavity pumping process allows for counteracting the low absorption inherent to upconversion pumping and to dispatch the thermal loads on two separate laser crystals. The proposed laser architecture also features a relatively weak heating of the Tm:LiYF4 crystal and an increased tolerance to Tm3+ absorption. This laser design opens a new paradigm that holds great promise for high-power 2.3-µm solid-state lasers based on thulium ions.

4.
Opt Lett ; 49(11): 2970-2973, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824305

RESUMO

We report on a polarization-resolved study of mid-infrared emission properties of Er3+-doped orthorhombic yttrium aluminum perovskite YAlO3 single crystal. For the 4I11/2 → 4I13/2 Er3+ transition, the stimulated emission cross section is 0.20 × 10-20 cm2 at 2919 nm for light polarization E ‖ c. Pumped by an Yb-fiber laser at 976 nm, the 10 at.% Er:YAlO3 laser delivered 1.36 W at 2919 nm with a slope efficiency of 31.4%, very close to the Stokes limit, a laser threshold as low as 33 mW and a linear polarization. Pump-induced polarization switching between E || b and E || c eigen states was observed and explained by excited-state absorption from the terminal laser level.

5.
Small ; 19(49): e2303509, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635118

RESUMO

Persistent luminescence nanoparticles (PLNPs) are innovative materials able to emit light for a long time after the end of their excitation. Thanks to this property, their detection can be separated in time from the excitation, making it possible to obtain images with a high signal-to-noise ratio. This optical property can be of particular interest for the development of in vitro biosensors. Here, we report the unexpected effect of hydrogen peroxide (H2 O2 ) on the signal intensity of ZnGa2 O4 :Cr3+ (ZGO) nanoparticles. In the presence of H2 O2 , the signal intensity of ZGO can be amplified. This signal amplification can be used to detect and quantify H2 O2 in various media, using non-functionalized ZGO nanoparticles. This small molecule can be produced by several oxidases when they react with their substrate. Indeed, the quantification of glucose, lactic acid, and uric acid is possible. The limit of detection could be lowered by modifying the nanoparticles synthesis route. These optimized nanoparticles can also be used as new biosensor to detect larger molecules such as antigen, using the appropriate antibody. This unique property, i.e., persistent luminescence signal enhancement induced by H2 O2 , represents a new way to detect biomolecules which could lead to a very large number of bioassay applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Luminescência , Nanopartículas/química , Técnicas Biossensoriais/métodos
6.
Opt Express ; 31(12): 18751-18764, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381308

RESUMO

We report on the first laser operation of a disordered Tm:CaGdAlO4 crystal on the 3H4 → 3H5 transition. Under direct pumping at 0.79 µm, it generates 264 mW at 2.32 µm with a slope efficiency of 13.9% and 22.5% vs. incident and absorbed pump power, respectively, and a linear polarization (σ). Two strategies to overcome the bottleneck effect of the metastable 3F4 Tm3+ state leading to the ground-state bleaching are exploited: cascade lasing on the 3H4 → 3H5 and 3F4 → 3H6 transitions and dual-wavelength pumping at 0.79 and 1.05 µm combining the direct and upconversion pumping schemes. The cascade Tm-laser generates a maximum output power of 585 mW at 1.77 µm (3F4 → 3H6) and 2.32 µm (3H4 → 3H5) with a higher slope efficiency of 28.3% and a lower laser threshold of 1.43 W, out of which 332 mW are achieved at 2.32 µm. Under dual-wavelength pumping, further power scaling to 357 mW at at 2.32 µm is observed at the expense of increased laser threshold. To support the upconversion pumping experiment, excited-state absorption spectra of Tm3+ ions for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured for polarized light. Tm3+ ions in CaGdAlO4 exhibit broadband emission at 2.3 - 2.5 µm making this crystal promising for ultrashort pulse generation.

7.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042950

RESUMO

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Assuntos
Nanoestruturas , Cloreto de Sódio/química , Ânions/química , Nanoestruturas/química , Zinco/química , Dióxido de Silício/química , Cloretos/química , Catálise , Eletroquímica/métodos
8.
Opt Express ; 30(5): 8092-8103, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299557

RESUMO

Mid-infrared Er:CaF2 laser operating on the 4I11/2 → 4I13/2 transition is developed. Its power scaling capabilities and thermo-optics (fractional heat loading and thermal lensing) are compared under pumping into the 4I11/2 and 4I9/2 states. Using a 4.5 at.% Er:CaF2 crystal, a record-high continuous-wave output power of 0.83 W is achieved at 2800 nm with a slope efficiency of 31.6% and a laser threshold of 24 mW and the fractional heat loading is measured under lasing and non-lasing conditions, yielding the values of 52.0% and 71.7%, respectively (for pumping at 967.6 nm, into the 4I11/2 state). The thermal lens in Er:CaF2 is negative (divergent) owing to the negative thermo-optic coefficient and large and negative contribution of the photo-elastic effect. The sensitivity factors of the thermal lens are Mr = -4.84 and Mθ = -5.15 [m-1/(kW/cm2)] and the astigmatism degree is as low as 6%. When pumping into the higher lying 4I9/2 manifold, the thermal lens is enhanced owing to the additional heat generation from the multiphonon non-radiative path from this state, and the laser slope efficiency is deteriorated.

9.
Phys Chem Chem Phys ; 24(4): 2482-2490, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023517

RESUMO

This article reports for the first time an in-depth ab initio computational study on intrinsic point defects in Sr4Al14O25 that serves as host lattice for numerous phosphors. Defect Formation Enthalpies (DFEs) and defect concentrations were computed considering the supercell approach for different oxygen atmospheres. The charge transition levels have been determined for several point defects in their thermodynamically stable state and their impact on the electronic structure of the ideal unfaulted material is discussed. Our simulations demonstrated that the formation of most of native point defects is energy intensive under oxygen-rich, -intermediate or -poor synthesis conditions, except for the oxygen vacancies under O-poor atmosphere.

10.
Phys Chem Chem Phys ; 21(35): 19458-19468, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31461089

RESUMO

ZnGa2O4:Cr3+, owing to its persistent luminescence properties in the deep red range, is an exceptional material in view of foreseen in vivo imaging applications. In the present work, we report the elaboration process and detailed investigations of the optical properties of nano glass-ceramics composed of spinel ZnGa2O4:Cr3+,Yb3+ nanocrystals embedded in a transparent, silica rich, glass matrix. The as-prepared materials show good incorporation of the dopants in the crystallites leading in both Cr3+ and Yb3+ emissions. These emissions occur while exciting in the Cr3+ bands, indicating an energy transfer process from Cr3+ to Yb3+. Furthermore, excitation in the Yb3+ band in the near-infrared (NIR) range suggests an interesting up-conversion process, which promotes the Cr3+ emission. Persistent luminescence of both Cr3+ and Yb3+ doping ions can be activated by charging the Cr3+ excitation bands, leading to persistent luminescence of zinc gallate nanocrystals in both first and second biological windows. The influence of Yb3+ co-doping on persistent luminescence properties has been investigated by persistent luminescence decay profiles and thermoluminescence studies. Indeed, thermoluminescence glow curves of Yb3+ exhibit similar shape to those of Cr3+ but appear broader and shifted towards higher temperatures. This temperature shift may be explained by the temperature dependence of the involved energy transfer process.

11.
Medicina (Kaunas) ; 55(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443551

RESUMO

Background and Objectives: The presence of endometrial-like tissue outside the uterine cavity is a key feature of endometriosis. Although endometriotic lesions appear to be histologically quite similar to the eutopic endometrium, detailed studies comparing both tissues are required because their inner and surrounding cellular arrangement is distinct. Thus, comparison between tissues might require methods, such as laser capture microdissection (LCM), that allow for precise selection of an area and its specific cell populations. However, it is known that the efficient use of LCM depends on the type of studied tissue and on the choice of an adequate protocol. Recent studies have reported the use of LCM in endometriosis studies. The main objective of the present study is to establish a standardized protocol to obtain good-quality microdissected material from eutopic or ectopic endometrium. Materials and Methods: The main methodological steps involved in the processing of the lesion samples for LCM were standardized to yield material of good quality to be further used in molecular techniques. Results: We obtained satisfactory results regarding the yields and integrity of RNA and protein obtained from LCM-processed endometriosis tissues. Conclusion: LCM can provide more precise analysis of endometriosis biopsies, provided that key steps of the methodology are followed.


Assuntos
Endometriose/metabolismo , Endométrio/metabolismo , Expressão Gênica , Microdissecção e Captura a Laser , Criocirurgia , Endometriose/genética , Endometriose/patologia , Endometriose/cirurgia , Endométrio/patologia , Endométrio/cirurgia , Feminino , Humanos , Proteínas/análise , RNA Mensageiro/análise , Coloração e Rotulagem
12.
Inorg Chem ; 57(9): 5194-5203, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676568

RESUMO

Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr3+ to Er3+, we report a novel garnet persistent phosphor of Y3Al2Ga3O12 codoped with Er3+ and Cr3+ (YAG G:Er-Cr), which shows intense Cr3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er3+ can achieve higher spatial resolution and more accurate signal location than that of Cr3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr3+/Er3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.


Assuntos
Elétrons , Luminescência , Imagem Óptica , Cromo/química , Transferência de Energia , Érbio/química , Gálio/química , Raios Infravermelhos
13.
Phys Chem Chem Phys ; 20(36): 23294-23300, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30198536

RESUMO

Wet-chemically synthesized inorganic materials often exhibit luminescence behavior. We have recently shown that the amorphous yttrium-aluminium-borate (a-YAB) powders obtained by sol-gel and modified Pechini methods exhibit organic impurities, responsible for their intense visible photoluminescence and phosphorescence afterglow. However, the heterogeneity of impurity organic compounds and difficulties in their intact extraction from the solid inorganic host matrix limit the extraction-based chemical analysis for luminophore identification. Here, we propose a photo-physical route based on time-gated triplet-state optical spectroscopy (TGTSS) to construct the electronic structures of the trapped unknown luminophores, which successfully illustrates the luminescence properties of a-YAB powders in more detail and also provides important insights intrinsic to the nature of the luminophores. The experimental results accompanied with TD-DFT calculations of the theoretical electronic structures thus help us to propose the probable luminophore compounds trapped in rigid a-YAB matrices. We anticipate that the present approach will open new opportunities for analyzing similar complex luminescent materials, including carbon dots, graphene oxides, etc., which is vital for their improvement.

14.
Arch Gynecol Obstet ; 297(4): 977-984, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417283

RESUMO

PROPOSE: Endometriosis is a benign disease characterized by implantation and the growth of endometrial tissue outside the uterine cavity and it shares similarities with cancer. Lamin B1, p16 and p21 play a role on cell cycle regulation, development, cell repair and its activities are related to cancers. Considering the similarities between endometriosis and cancer, the aim of the present cross-sectional study is to detect p16, p21 and Lamin B1 in the ectopic endometrium of patients with endometriosis (n = 8) with eutopic (n = 8) and control endometrium (n = 8) and relate them to the maintenance and development of endometriosis. METHODS: Biopsies were obtained from both eutopic and ectopic, from deep infiltrating lesions, endometrium frozen and used for immunofluorescent (p16) or immunohistochemistry procedures (p16, p21, lamin B1). RESULTS: Detected higher lamin B1 in the eutopic endometrium when compared with ectopic endometrium, with no differences between endometriosis tissue with control endometrium. Similar presence of p16 in all groups of patients and no p21 detection was observed. CONCLUSION: We observed reduced detection of lamin B1 in the ectopic endometrium raising the possibility that the presence of senescent cells might be contributing to the maintenance and progression of endometriosis by apoptosis resistance and peritoneal stress inherent of the disease.


Assuntos
Biópsia , Endometriose/metabolismo , Endométrio/metabolismo , Lamina Tipo B/metabolismo , Doenças Uterinas/metabolismo , Adulto , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Endometriose/sangue , Endometriose/patologia , Endométrio/patologia , Feminino , Imunofluorescência , Genes p16 , Humanos , Imuno-Histoquímica , Lamina Tipo B/genética , Doenças Uterinas/sangue , Doenças Uterinas/patologia , Útero/patologia
15.
Inorg Chem ; 56(11): 6499-6506, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28537713

RESUMO

The resistance to thermal quenching is an essential factor in evaluating the performance of luminescent materials for application in white light emitting diodes (WLEDs). In this work, we studied the site occupancy preference and thermal quenching of luminescence in ß-Ca2P2O7:Bi2+ red phosphor at low (10-300 K) and high temperatures (303-573 K). In ß-Ca2P2O7, the host lattice has four different calcium sites, at which Bi2+dopant can be located. After comparing the change of bond energy when the Bi2+ ions are incorporated into the four calcium sites, we found out that Bi2+ would preferentially occupy the smaller energy variation sites Ci(2) and Ci(1) in this compound, which can be assigned to Bi(2) and Bi(1), respectively. Surprisingly, we noticed that the variation of emission intensity is different under different excitations when the temperature changes from 10 to 300 K. When exciting into the typical absorption of Bi(1) sites at 419 nm, the emission intensity at 300 K remains only 38% as compared to that at 10 K, while exciting into typical Bi(2) absorption at 460 nm, the emission intensity increases to 110%. When further increasing the temperature from 303 to 573 K, we observed a similar phenomenon, and the emission at 460 nm excitation starts to quench at 453 K. The emission intensity at 573 K still remains 86.1% of that at 303 K. This might be attributed to the Bi(2) → Bi(1) energy transfer. It is also evidenced by the time-resolved emission spectra and lifetime values. This work gives new insights into better understanding luminescent behaviors of Bi2+-doped materials with multiple cation sites. This should be helpful in the future when designing the bismuth doped phosphor for WLEDs with better resistance to thermal quenching.

16.
Phys Chem Chem Phys ; 19(2): 1369-1377, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27976765

RESUMO

We have studied in this work the effect of increasing structural disorder on the persistent luminescence of a Cr3+ doped zinc gallate spinel. This disorder was introduced by progressive substitution of Zn2+ by Mg2+ ions, and was studied by photoluminescence, X-ray diffraction, extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES) and electron paramagnetic resonance (EPR) spectroscopy. It was found that increasing the Mg/Zn substitution decreases the number of Cr3+ in undistorted sites and increases the number of Cr3+ with neighbouring antisite defects and with neighbouring Cr3+ ions (referred to as Cr clusters), which in turn decreases the intensity of persistent luminescence. Both XANES and EPR spectra could be simulated by a linear combination of Cr3+ spectra with three types of Cr3+ environments. The increasing disorder was found to be correlated with a decrease of the average Cr-O bond length and a decrease of crystal field strength experienced by Cr3+ ions.

17.
Angew Chem Int Ed Engl ; 56(45): 13995-13998, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28892584

RESUMO

Yttrium aluminum borate (YAB) powders prepared by sol-gel process have been investigated to understand their photoluminescence (PL) mechanism. The amorphous YAB powders exhibit bright visible PL from blue emission for powders calcined at 450 °C to broad white PL for higher calcination temperature. Thanks to 13 C labelling, NMR and EPR studies show that propionic acid initially used to solubilize the yttrium nitrate is decomposed into aromatic molecules confined within the inorganic matrix. DTA-TG-MS analyses show around 2 wt % of carbogenic species. The PL broadening corresponds to the apparition of a new band at 550 nm, associated with the formation of aromatic species. Furthermore, pulsed ENDOR spectroscopy combined with DFT calculations enables us to ascribe EPR spectra to free radicals derived from small (2 to 3 rings) polycyclic aromatic hydrocarbons (PAH). PAH molecules are thus at the origin of the PL as corroborated by slow afterglow decay and thermoluminescence experiments.

18.
Cancer ; 122(13): 2004-11, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27028170

RESUMO

BACKGROUND: The objective of this article was to report the results from a randomized clinical trial comparing intensity-modulated radiotherapy (IMRT) with 3-dimensonal conformal radiotherapy (3DCRT) for the treatment of prostate cancer on a hypofractionated schedule. METHODS: The authors randomly assigned 215 men who had localized prostate cancer to receive hypofractionated radiotherapy to a total dose of 70 grays (Gy) in 25 fractions (at 2.8 Gy per fraction) using either IMRT or 3DCRT. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity were prospectively evaluated according to modified Radiation Therapy Oncology Group criteria. Biochemical control was defined according to the Phoenix criteria (prostate-specific antigen nadir + 2 ng/mL). RESULTS: In total, 215 patients were enrolled in the IMRT group (n = 109) or the 3DCRT group (n = 106). The 3DCRT arm had a 27% rate of grade ≥ 2 acute GU toxicity compared with a 9% rate in the IMRT arm (P = .001) and a 24% rate of grade ≥ 2 acute GI toxicity compared with a 7% rate in the IMRT arm (P = .001). The maximal rate of grade ≥2 late GU toxicity during the entire period of follow-up was 3.7% in the IMRT group versus 12.3% in the 3DCRT group (P = .02). The maximal rate of grade ≥2 late GI toxicity during the entire follow-up was 6.4% in the IMRT group versus 21.7% in the 3DCRT group (P = .001). The 5-year rate of freedom from biochemical failure was 95.4% in the IMRT arm and 94.3% in the 3DCRT arm (P = .678). CONCLUSIONS: IMRT reduced the delivery of significant radiation doses to the bladder and rectum using a similar target volume. This dosimetric advantage resulted in a lower rate of acute/late grade ≥ 2 GI and GU toxicity for IMRT compared with 3DCRT. Cancer 2016;122:2004-11. © 2016 American Cancer Society.


Assuntos
Neoplasias da Próstata/radioterapia , Lesões por Radiação/epidemiologia , Radioterapia Conformacional/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Antígeno Prostático Específico/metabolismo , Hipofracionamento da Dose de Radiação , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Resultado do Tratamento
19.
Appl Psychophysiol Biofeedback ; 41(1): 1-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26242877

RESUMO

This study examined the relationship between mood and rating of perceived exertion (RPE) during a simulated multiple-lap time trial (MLTT). Nineteen male cyclists performed a MLTT consisting of four 9.9 km laps, each lap with a gradient ranging from 0 to 10 %. Mood as measured by the Profile of Mood States Questionnaire (POMS) and perceived exertion as measured by the Borg CR100 scale (RPE) were obtained at the end of each lap. A categorical multiple regressive model, having median of POMS subscales as independent variables, was obtained to explain the variance in median RPE responses. Increases in POMS fatigue scores and decreases in POMS vigour scores were observed throughout the MLTT (P < 0.001). A linear increase in RPE during the MLTT was also observed (P < 0.001). POMS fatigue subscale scores accounted for 88 % of the variance in RPE during the MLTT (R(2) = 0.88, P = 0.002), and no other POMS subscale improved the final predictive model. With the exception of fatigue these results suggest that most aspects of mood do not have a discernable effect on RPE during a MLTT. The rate of increase in RPE can predict the MLTT endpoint.


Assuntos
Afeto/fisiologia , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Exercício Físico/fisiologia , Esforço Físico/fisiologia , Adulto , Fadiga/psicologia , Humanos , Masculino
20.
Nat Mater ; 13(4): 418-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651431

RESUMO

Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.


Assuntos
Rastreamento de Células/métodos , Medições Luminescentes/métodos , Nanopartículas Metálicas , Microscopia de Fluorescência/métodos , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia , Animais , Meios de Contraste , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA