Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 43(4): 1337-1351, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31634124

RESUMO

Recent shadow detection algorithms have shown initial success on small datasets of images from specific domains. However, shadow detection on broader image domains is still challenging due to the lack of annotated training data, caused by the intense manual labor required for annotating shadow data. In this paper we propose "lazy annotation", an efficient annotation method where an annotator only needs to mark the important shadow areas and some non-shadow areas. This yields data with noisy labels that are not yet useful for training a shadow detector. We address the problem of label noise by jointly learning a shadow region classifier and recovering the labels in the training set. We consider the training labels as unknowns and formulate label recovery as the minimization of the sum of squared leave-one-out errors of a Least Squares SVM, which can be efficiently optimized. Experimental results show that a classifier trained with recovered labels achieves comparable performance to a classifier trained on the properly annotated data. These results motivated us to collect a new dataset that is 20 times larger than existing datasets and contains a large variety of scenes and image types. Naturally, such a large dataset is appropriate for training deep learning methods. Thus, we propose a stacked Convolutional Neural Network architecture that efficiently trains on patch level shadow examples while incorporating image level semantic information. This means that the detected shadow patches are refined based on image semantics. Our proposed pipeline, trained on recovered labels, performs at state-of-the art level. Furthermore, the proposed model performs exceptionally well on a cross dataset task, proving the generalization power of the proposed architecture and dataset.

2.
IEEE Trans Pattern Anal Mach Intell ; 40(3): 682-695, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28410096

RESUMO

The objective of this work is to detect shadows in images. We pose this as the problem of labeling image regions, where each region corresponds to a group of superpixels. To predict the label of each region, we train a kernel Least-Squares Support Vector Machine (LSSVM) for separating shadow and non-shadow regions. The parameters of the kernel and the classifier are jointly learned to minimize the leave-one-out cross validation error. Optimizing the leave-one-out cross validation error is typically difficult, but it can be done efficiently in our framework. Experiments on two challenging shadow datasets, UCF and UIUC, show that our region classifier outperforms more complex methods. We further enhance the performance of the region classifier by embedding it in a Markov Random Field (MRF) framework and adding pairwise contextual cues. This leads to a method that outperforms the state-of-the-art for shadow detection. In addition we propose a new method for shadow removal based on region relighting. For each shadow region we use a trained classifier to identify a neighboring lit region of the same material. Given a pair of lit-shadow regions we perform a region relighting transformation based on histogram matching of luminance values between the shadow region and the lit region. Once a shadow is detected, we demonstrate that our shadow removal approach produces results that outperform the state of the art by evaluating our method using a publicly available benchmark dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA