Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483991

RESUMO

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

2.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371414

RESUMO

In order to assess the limits and applicability of Pitot tubes for the measurement of flow velocity in narrow ducts, e.g., biomass burning plants, an optical, dual function device was implemented. This sensor, based on spectroscopic techniques, targets a trace gas, injected inside the stack either in bursts, or continuously, so performing transit time or dilution measurements. A comparison of the two optical techniques with respect to Pitot readings was carried out in different flow conditions (speed, temperature, gas composition). The results of the two optical measurements are in agreement with each other and fit quite well the theoretical simulation of the flow field, while the results of the Pitot measurements show a remarkable dependence on position and inclination of the Pitot tube with respect to the duct axis. The implications for the metrology of small combustors' emissions are outlined.

3.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151286

RESUMO

Dioxins and related compounds are environmental xenobiotics that are dangerous to human life, due to the accumulation and persistence in the environment and in the food chain. Cancer, reproductive and developmental issues, and damage to the immune system and endocrine system are only a few examples of the impact of such substances in everyday life. For these reasons, it is fundamental to detect and monitor these molecules in biological samples. The consolidated technique for analytical evaluation is gas chromatography combined with high-resolution mass spectrometry. Nowadays, the development of mid-infrared optical components like broadband laser sources, optical frequency combs, high performance Fourier-transform infrared spectroscopy, and plasmonic sensors open the way to new techniques for detection and real time monitoring of these organic pollutants in gaseous or liquid phase, with sufficient sensitivity and selectivity, and in short time periods. In this review, we report the latest techniques for the detection of dioxins, furans and related compounds based on optical and spectroscopic methods, looking at future perspectives.


Assuntos
Dioxinas e Compostos Semelhantes a Dioxinas/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Dioxinas e Compostos Semelhantes a Dioxinas/química , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Humanos , Estrutura Molecular , Análise Espectral
4.
Sensors (Basel) ; 18(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037111

RESUMO

Trace gas concentration measurements in the stratosphere and troposphere are critically required as inputs to constrain climate models. For this purpose, measurement campaigns on stratospheric aircraft and balloons are being carried out all over the world, each one involving sensors which are tailored for the specific gas and environmental conditions. This paper describes an automated, portable, mid-infrared quantum cascade laser spectrometer, for in situ carbon monoxide mixing ratio measurements in the stratosphere and troposphere. The instrument was designed to be versatile, suitable for easy installation on different platforms and capable of operating completely unattended, without the presence of an operator, not only during one flight but for the whole period of a campaign. The spectrometer features a small size (80 × 25 × 41 cm3), light weight (23 kg) and low power consumption (85 W typical), without being pressurized and without the need of calibration on the ground or during in-flight operation. The device was tested in the laboratory and in-field during a research campaign carried out in Nepal in summer 2017, onboard the stratospheric aircraft M55 Geophysica. The instrument worked extremely well, without external maintenance during all flights, proving an in-flight sensitivity of 1⁻2 ppbV with a time resolution of 1 s.

5.
Phys Rev Lett ; 115(8): 083601, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340187

RESUMO

Recent theoretical and experimental efforts have shown the remarkable and counterintuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to analyze the performance of transport networks for different conditions of interference, dephasing, and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e., a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of quantum transport phenomena and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

6.
Sci Rep ; 6: 37791, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886246

RESUMO

Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

7.
J Hazard Mater ; 274: 98-105, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794981

RESUMO

The possibility to monitor in real-time the emission of dioxins produced by incineration of waste or by industrial processes is nowadays a necessity considering the high toxicity of these compounds, their persistence in the environment and their ability to bio-accumulate in the food chain. Recently it has been demonstrated the potentiality of detecting dioxins in carbon tetrachloride via MIR Quantum Cascade Lasers. A fundamental step in real time monitoring of dioxins emission is the possibility to recognize the most toxic congeners within complex mixtures and at low concentrations. Taking into account the lack of spectroscopic data about these very toxic environmental pollutants and the necessity to monitor their emissions we have recorded infrared spectra of 13 of the 17 most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) dissolved in carbon tetrachloride. In this way we have obtained a small database that we have used to test the ability of a linear regression algorithm to recognize each congener and its relative concentration in complex mixtures of these compounds.


Assuntos
Benzofuranos/análise , Dibenzodioxinas Policloradas/análogos & derivados , Algoritmos , Benzofuranos/química , Tetracloreto de Carbono/química , Dibenzofuranos Policlorados , Modelos Lineares , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
8.
Science ; 306(5696): 660-2, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15499013

RESUMO

Single-photon-added coherent states are the result of the most elementary amplification process of classical light fields by a single quantum of excitation. Being intermediate between a single-photon Fock state (fully quantum-mechanical) and a coherent (classical) one, these states offer the opportunity to closely follow the smooth transition between the particle-like and the wavelike behavior of light. We report the experimental generation of single-photon-added coherent states and their complete characterization by quantum tomography. Besides visualizing the evolution of the quantum-to-classical transition, these states allow one to witness the gradual change from the spontaneous to the stimulated regimes of light emission.

9.
Opt Lett ; 27(7): 521-3, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18007852

RESUMO

We demonstrate the generation of cw tunable far-infrared radiation by mixing a quantum cascade laser and a CO>(2) laser in a W-Ni metal-insulator-metal diode. The first known spectroscopic application to the recording of an H(79)Br transition near 4.47 THz is reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA