Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Digit Imaging ; 35(5): 1271-1282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35513586

RESUMO

Age-related macular degeneration is the leading cause of vision loss in developed countries, and wet-type AMD requires urgent treatment and rapid diagnosis because it causes rapid irreversible vision loss. Currently, AMD diagnosis is mainly carried out using images obtained by optical coherence tomography. This diagnostic process is performed by human clinicians, so human error may occur in some cases. Therefore, fully automatic methodologies are highly desirable adding a layer of robustness to the diagnosis. In this work, a novel computer-aided diagnosis and visualization methodology is proposed for the rapid identification and visualization of wet AMD. We adapted a convolutional neural network for segmentation of a similar domain of medical images to the problem of wet AMD segmentation, taking advantage of transfer learning, which allows us to work with and exploit a reduced number of samples. We generate a 3D intuitive visualization where the existence, position and severity of the fluid were represented in a clear and intuitive way to facilitate the analysis of the clinicians. The 3D visualization is robust and accurate, obtaining satisfactory 0.949 and 0.960 Dice coefficients in the different evaluated OCT cube configurations, allowing to quickly assess the presence and extension of the fluid associated to wet AMD.


Assuntos
Degeneração Macular , Humanos , Degeneração Macular/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Redes Neurais de Computação , Diagnóstico por Computador/métodos
2.
Expert Syst Appl ; 173: 114677, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612998

RESUMO

One of the main challenges in times of sanitary emergency is to quickly develop computer aided diagnosis systems with a limited number of available samples due to the novelty, complexity of the case and the urgency of its implementation. This is the case during the current pandemic of COVID-19. This pathogen primarily infects the respiratory system of the afflicted, resulting in pneumonia and in a severe case of acute respiratory distress syndrome. This results in the formation of different pathological structures in the lungs that can be detected by the use of chest X-rays. Due to the overload of the health services, portable X-ray devices are recommended during the pandemic, preventing the spread of the disease. However, these devices entail different complications (such as capture quality) that, together with the subjectivity of the clinician, make the diagnostic process more difficult and suggest the necessity for computer-aided diagnosis methodologies despite the scarcity of samples available to do so. To solve this problem, we propose a methodology that allows to adapt the knowledge from a well-known domain with a high number of samples to a new domain with a significantly reduced number and greater complexity. We took advantage of a pre-trained segmentation model from brain magnetic resonance imaging of a unrelated pathology and performed two stages of knowledge transfer to obtain a robust system able to segment lung regions from portable X-ray devices despite the scarcity of samples and lesser quality. This way, our methodology obtained a satisfactory accuracy of 0.9761 ± 0.0100 for patients with COVID-19, 0.9801 ± 0.0104 for normal patients and 0.9769 ± 0.0111 for patients with pulmonary diseases with similar characteristics as COVID-19 (such as pneumonia) but not genuine COVID-19.

3.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260062

RESUMO

Optical Coherence Tomography (OCT) has become a relevant image modality in the ophthalmological clinical practice, as it offers a detailed representation of the eye fundus. This medical imaging modality is currently one of the main means of identification and characterization of intraretinal cystoid regions, a crucial task in the diagnosis of exudative macular disease or macular edema, among the main causes of blindness in developed countries. This work presents an exhaustive analysis of intensity and texture-based descriptors for its identification and classification, using a complete set of 510 texture features, three state-of-the-art feature selection strategies, and seven representative classifier strategies. The methodology validation and the analysis were performed using an image dataset of 83 OCT scans. From these images, 1609 samples were extracted from both cystoid and non-cystoid regions. The different tested configurations provided satisfactory results, reaching a mean cross-validation test accuracy of 92.69%. The most promising feature categories identified for the issue were the Gabor filters, the Histogram of Oriented Gradients (HOG), the Gray-Level Run-Length matrix (GLRL), and the Laws' texture filters (LAWS), being consistently and considerably selected along all feature selector algorithms in the top positions of different relevance rankings.

4.
Med Biol Eng Comput ; 61(5): 1209-1224, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36690902

RESUMO

Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073.


Assuntos
Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagem , Retinopatia Diabética/diagnóstico , Incerteza , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Estudos Retrospectivos
5.
IEEE Access ; 8: 195594-195607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34786295

RESUMO

The recent human coronavirus disease (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the effects of COVID-19 in pulmonary tissues, chest radiography imaging plays an important role in the screening, early detection, and monitoring of the suspected individuals. Hence, as the pandemic of COVID-19 progresses, there will be a greater reliance on the use of portable equipment for the acquisition of chest X-ray images due to its accessibility, widespread availability, and benefits regarding to infection control issues, minimizing the risk of cross-contamination. This work presents novel fully automatic approaches specifically tailored for the classification of chest X-ray images acquired by portable equipment into 3 different clinical categories: normal, pathological, and COVID-19. For this purpose, 3 complementary deep learning approaches based on a densely convolutional network architecture are herein presented. The joint response of all the approaches allows to enhance the differentiation between patients infected with COVID-19, patients with other diseases that manifest characteristics similar to COVID-19 and normal cases. The proposed approaches were validated over a dataset specifically retrieved for this research. Despite the poor quality of the chest X-ray images that is inherent to the nature of the portable equipment, the proposed approaches provided global accuracy values of 79.62%, 90.27% and 79.86%, respectively, allowing a reliable analysis of portable radiographs to facilitate the clinical decision-making process.

6.
Biomed Opt Express ; 9(10): 4730-4754, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319899

RESUMO

Nowadays, among the main causes of blindness in developed countries are age-related macular degeneration (AMD) and the diabetic macular edema (DME). Both diseases present, as a common symptom, the appearance of cystoid fluid regions inside the retinal layers. Optical coherence tomography (OCT) image modality was one of the main medical imaging techniques for the early diagnosis and monitoring of AMD and DME via this intraretinal fluid detection and characterization. We present a novel methodology to identify these fluid accumulations by means of generating binary maps (offering a direct representation of these areas) and heat maps (containing the region confidence). To achieve this, a set of 312 intensity and texture-based features were studied. The most relevant features were selected using the sequential forward selection (SFS) strategy and tested with three archetypal classifiers: LDC, SVM and Parzen window. Finally, the most proficient classifier is used to create the proposed maps. All of the tested classifiers returned satisfactory results, the best classifier achieving a mean test accuracy higher than 94% in all of the experiments. The suitability of the maps was evaluated in a context of a screening issue with three different datasets obtained with two different devices, testing the capabilities of the system to work independently of the used OCT device. The experiments with the map creation were performed using 323 OCT images. Using only the binary maps, more than 91.33% of the images were correctly classified. With only the heat maps, the proposed methodology correctly separated 93.50% of the images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA