Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014501

RESUMO

Cleavage of DNA at noncanonical recognition sequences by restriction endonucleases (star activity) in bulk solution can be promoted by global experimental parameters, including enzyme or substrate concentration, temperature, pH, or buffer composition. To study the effect of nanoscale confinement on the noncanonical behaviour of BamHI, which cleaves a single unique sequence of 6 bp, we used AFM nanografting to generate laterally confined DNA monolayers (LCDM) at different densities, either in the form of small patches, several microns in width, or complete monolayers of thiol-modified DNA on a gold surface. We focused on two 44-bp DNAs, each containing a noncanonical BamHI site differing by 2 bp from the cognate recognition sequence. Topographic AFM imaging was used to monitor end-point reactions by measuring the decrease in the LCDM height with respect to the surrounding reference surface. At low DNA densities, BamHI efficiently cleaves only its cognate sequence while at intermediate DNA densities, noncanonical sequence cleavage occurs, and can be controlled in a stepwise (on/off) fashion by varying the DNA density and restriction site sequence. This study shows that endonuclease action on noncanonical sites in confined nanoarchitectures can be modulated by varying local physical parameters, independent of global chemical parameters.


Assuntos
Clivagem do DNA , DNA , Sequência de Bases , DNA/química , Enzimas de Restrição do DNA/metabolismo , Desoxirribonuclease BamHI/metabolismo , Especificidade por Substrato
2.
Anal Chem ; 86(18): 9013-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24947124

RESUMO

Here we investigate a novel signal-on electrochemical DNA sensor based on the use of a clamp-like DNA probe that binds a complementary target sequence through two distinct and sequential events, which lead to the formation of a triplex DNA structure. We demonstrate that this target-binding mechanism can improve both the affinity and specificity of recognition as opposed to classic probes solely based on Watson-Crick recognition. By using electrochemical signaling to report the conformational change, we demonstrate a signal-on E-DNA sensor with up to 400% signal gain upon target binding. Moreover, we were able to detect with nanomolar affinity a perfectly matched target as short as 10 bases (K(D) = 0.39 nM). Finally, thanks to the molecular "double-check" provided by the concomitant Watson-Crick and Hoogsteen base pairings involved in target recognition, our sensor provides excellent discrimination efficiency toward a single-base mismatched target.


Assuntos
DNA/análise , Técnicas Eletroquímicas , Pareamento Incorreto de Bases , Sondas de DNA/química , Sondas de DNA/metabolismo , Eletrodos , Azul de Metileno/química , Microscopia de Força Atômica , Hibridização de Ácido Nucleico , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA