RESUMO
A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.
Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Receptores Purinérgicos P2X7/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Eritrócitos/parasitologia , Feminino , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi/imunologiaRESUMO
For decades, scientists have described numerous protein pathways and functions. Much of a protein's function depends on its interactions with different partners, and those partners can change depending on the cell type or system. The P2X7 receptor (P2X7R) is one such multifunctional protein that is related to multiple partners and signaling pathways. The relationship between P2X7R and different enzymes involved in lipid metabolism represents a relatively new field in P2X7R research. This field of research began in epithelial cells and currently includes immune and nervous cells. The P2X7R-lipid metabolism pathway is related to many biological functions of P2X7R, such as cell death and pathogen clearance, and this signaling pathway may be involved in many functions that are dependent on bioactive lipids. In the present review, we will attempt to summarize data related to the P2X7R-lipid metabolism pathway, focusing on signaling pathways and their biological relevance to the immune system and infection.
RESUMO
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Assuntos
Interações Hospedeiro-Patógeno , Microdomínios da Membrana/microbiologia , Animais , Evolução Biológica , Tratamento Farmacológico , Humanos , Microdomínios da Membrana/parasitologia , Microdomínios da Membrana/virologiaRESUMO
Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans ß-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1ß, IFN-γ and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D.