Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(24): 7542-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034287

RESUMO

Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution.


Assuntos
Evolução Molecular , Proteínas Repressoras/química , Proteínas Repressoras/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada , DNA/genética , Elementos Facilitadores Genéticos , Genes Homeobox , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Modelos Genéticos , Família Multigênica , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/metabolismo , Strongylocentrotus purpuratus/genética , Peixe-Zebra/genética
2.
PLoS One ; 16(2): e0246814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630857

RESUMO

During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.


Assuntos
Colesterol/química , Proteínas Hedgehog/química , Simulação de Dinâmica Molecular , Animais , Colesterol/genética , Colesterol/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Domínios Proteicos
3.
Commun Biol ; 3(1): 250, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32440000

RESUMO

Nature provides a number of mechanisms to encode dynamic information in biomolecules. In metazoans, there exist rare chemical modifications that occur in entirely unique regimes. One such example occurs in the Hedgehog (Hh) morphogens, proteins singular across all domains of life for the nature of their covalent ligation to cholesterol. The isoform- and context-specific efficiency of this ligation profoundly impacts the activity of Hh morphogens and represents an unexplored facet of Hh ligand-dependent cancers. To elucidate the chemical mechanism of this modification, we have defined roles of the uncharacterized sterol recognition region (SRR) in Hh proteins. We use a combination of sequence conservation, directed mutagenesis, and biochemical assays to specify residues of the SRR participate in cellular and biochemical aspects of Hh cholesterolysis. Our investigations offer a functional portrait of this region, providing opportunities to identify parallel reactivity in nature and a template to design tools in chemical biology.


Assuntos
Proteínas Hedgehog/metabolismo , Processamento de Proteína Pós-Traducional , Esteróis/metabolismo , Células HEK293 , Proteínas Hedgehog/química , Humanos
4.
Commun Biol ; 3(1): 286, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488121

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Cell Rep ; 19(2): 364-374, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402858

RESUMO

Gene expression in different spatial domains is often controlled by separate cis-regulatory modules (CRMs), but regulatory states determining CRM activity are not only distinct in space, they also change continuously during developmental time. Here, we systematically analyzed the regulatory sequences controlling hox11/13b expression and identified a single CRM required throughout embryonic gut development. We show that within this CRM, distinct sets of binding sites recognizing Ets, Tcf, and homeodomain transcription factors control the dynamic spatial expression of hox11/13b in each developmental phase. Several binding sites execute multiple, sometimes contradictory, regulatory functions, depending on the temporal and spatial regulatory context. In addition, we identified a nearby second CRM operating in inter-modular AND logic with the first CRM to control hox11/13b expression in hindgut endoderm. Our results suggest a mechanism for continuous gene expression in response to changing developmental network functions that depends on sequential combinatorial regulation of individual CRMs.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Íntrons/genética , Ouriços-do-Mar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA