Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 35(9): 1636-1648, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666590

RESUMO

BACKGROUND: Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES: We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS: We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS: Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS: Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Diabetes Mellitus Experimental , Dopamina , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Substância Negra/metabolismo , Transmissão Sináptica
2.
Curr Biol ; 31(16): 3490-3503.e3, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34146482

RESUMO

Prior experience of a stimulus can inhibit subsequent acquisition or expression of a learned association of that stimulus. However, the neuronal manifestations of this learning effect, named latent inhibition (LI), are poorly understood. Here, we show that prior odor exposure can produce context-dependent LI of later appetitive olfactory memory performance in Drosophila. Odor pre-exposure forms a short-lived aversive memory whose lone expression lacks context-dependence. Acquisition of odor pre-exposure memory requires aversively reinforcing dopaminergic neurons that innervate two mushroom body compartments-one group of which exhibits increasing activity with successive odor experience. Odor-specific responses of the corresponding mushroom body output neurons are suppressed, and their output is necessary for expression of both pre-exposure memory and LI of appetitive memory. Therefore, odor pre-exposure attaches negative valence to the odor itself, and LI of appetitive memory results from a temporary and context-dependent retrieval deficit imposed by competition with the parallel short-lived aversive memory.


Assuntos
Comportamento Apetitivo , Drosophila , Aprendizagem , Animais , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Memória , Corpos Pedunculados/fisiologia , Odorantes , Olfato
3.
ACS Chem Neurosci ; 10(8): 3419-3426, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361457

RESUMO

The calcium-binding protein calbindin-D28K, or calb1, is expressed at higher levels by dopamine (DA) neurons originating in the ventral tegmental area (VTA) than in the adjacent substantia nigra pars compacta (SNc). Calb1 has received attention for a potential role in neuroprotection in Parkinson's disease. The underlying physiological roles for calb1 are incompletely understood. We used cre-loxP technology to knock down calb1 in mouse DA neurons to test whether calb1 governs axonal release of DA in the striatum, detected using fast-scan cyclic voltammetry ex vivo. In the ventral but not dorsal striatum, calb1 knockdown elevated DA release and modified the spatiotemporal coupling of Ca2+ entry to DA release. Furthermore, calb1 knockdown enhanced DA uptake but attenuated the impact of DA transporter (DAT) inhibition by cocaine on underlying DA release. These data reveal that calb1 acts through a range of mechanisms underpinning both DA release and uptake to limit DA transmission in the ventral but not dorsal striatum.


Assuntos
Calbindina 1/metabolismo , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Animais , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Silenciamento de Genes , Camundongos
4.
Nat Commun ; 10(1): 4263, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537790

RESUMO

Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short-term plasticity of dopamine release, using fast-scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short-term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+-gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short-term plasticity, governing the balance between release-dependent and independent mechanisms that also show region-specific gating.


Assuntos
Axônios/metabolismo , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Animais , Transporte Biológico , Inibidores da Captação de Dopamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA