RESUMO
Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100â¯ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54⯱â¯0.11% and increased the carbonate bound fraction to 26.1⯱â¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.
Assuntos
Arthrobacter , Carbonatos , Cromo , Arthrobacter/metabolismo , Cromo/química , Carbonatos/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Carbonato de Cálcio/químicaRESUMO
Recently, bacterial cellulose and related materials attracted significant attention for applications such as leather-like materials, wound healing materials, etc., due to their abundance in pure form and excellent biocompatibility. Chemical modification of bacterial cellulose further helps to improve specific properties for practical utility and economic viability. However, in most cases, chemical modification of cellulose materials involves harsh experimental conditions such as higher temperatures or organic solvents, which may destroy the 3-dimensional network of bacterial cellulose, thereby altering its characteristic properties. Hence, in this work, we have adopted the Suzuki coupling methodology, which is relatively unexplored for chemically modifying cellulose materials. As the Suzuki coupling reaction is tolerable against air and water, modification can be done under mild conditions so that the covalently modified cellulose materials remain intact without destroying their 3-dimensional form. We performed Suzuki coupling reactions on cellulose surfaces using a recently developed thermoresponsive catalyst consisting of poly(N-isopropylacrylamide) (PNIPAM)-tagged N-heterocyclic carbene (NHC)-based palladium(II) complex. The thermoresponsive nature of the catalyst particularly helped to perform reactions in a water medium under mild conditions considering the biological nature of the substrates, where separation of the catalyst can be easily achieved by tuning temperature. The boronic acid derivatives have been chosen to alter the wettability behavior of bacterial cellulose. Bacterial cellulose (BC) obtained from fermentation on a lab scale using a cellulose-producing bacterium called Gluconacetobacter kombuchae (MTCC 6913) under Hestrin-Schramm (HS) medium, or kombucha-derived bacterial cellulose (KBC) obtained from kombucha available in the market or cotton-cellulose (CC) was chosen for the surface functionalization to find the methodology's diversity. Movie files in the Supporting Information and figures in the manuscript demonstrated the utility of the methodology for fluorescent labeling of bacterial cellulose and related materials. Finally, contact angle analysis of the surfaces showed the hydrophobic natures of some functionalized BC-based materials, which are important for the practical use of biomaterials in wet climatic conditions.
Assuntos
Celulose , Molhabilidade , Celulose/química , Catálise , TemperaturaRESUMO
Biocementation via enzyme induced carbonate precipitation (EICP) is an emerging ground improvement technique that utilizes urease for calcium carbonate precipitation. Usage of expensive laboratory grade chemicals in EICP hinders its implementation at field level applications. In this study, the feasibility of utilizing solid wastes generated from leather industry was investigated for EICP process. Initially, the proteinaceous fleshing waste was used as nitrogen source for production of an extracellular urease from Arthrobacter creatinolyticus MTCC 5604 followed by its subsequent use in EICP with suspended solids of tannery lime liquor, as alternative calcium source. The calcium ion solution was prepared by treating suspended solids of lime liquor with 1 N HCl. The EICP was optimum with 1000 U of urease, 1.0 M urea and 1.0 M CaCl2.2H2O for test tube experiments. Sand solidification experiments under optimal conditions with five times addition of cementation solution yielded a maximum unconfined compressive strength (UCS) of 810 kPa with laboratory grade CaCl2.2H2O and 780 kPa with calcium from lime liquor. The crystalline phases and morphology of the CaCO3 precipitate were analyzed by XRD, FTIR and SEM-EDX. The results showed the formation of more stable calcite in EICP with calcium obtained from lime liquor, while calcite and vaterite polymorphs were obtained with CaCl2.2H2O. Utilization of fleshing waste and lime liquor in EICP could reduce the pollution load and sludge formation that are generated during the pre-tanning operations of leather manufacturing. The results indicated the viability of process to achieve cost effective and sustainable biocementation for large scale applications.