Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365765

RESUMO

Terminal drought stress poses a big challenge to sustain wheat grain production in rain-fed environments. This study aimed to utilize the genetically diverse pre-breeding lines for identification of genomic regions associated with agro-physiological traits at terminal stage drought stress in wheat. A total of 339 pre-breeding lines panel derived from three-way crosses of 'exotics × elite × elite' lines were evaluated in field conditions at Obregon, Mexico for two years under well irrigated as well as drought stress environments. Drought stress was imposed at flowering by skipping the irrigations at pre and post anthesis stage. Results revealed that drought significantly reduced grain yield (Y), spike length (SL), number of grains spikes-1 (NGS) and thousand kernel weight (TKW), while kernel abortion (KA) was increased. Population structure analysis in this panel uncovered three sub-populations. Genome wide linkage disequilibrium (LD) decay was observed at 2.5 centimorgan (cM). The haplotypes-based genome wide association study (GWAS) identified significant associations of Y, SL, and TKW on three chromosomes; 4A (HB10.7), 2D (HB6.10) and 3B (HB8.12), respectively. Likewise, associations on chromosomes 6B (HB17.1) and 3A (HB7.11) were found for NGS while on chromosome 3A (HB7.12) for KA. The genomic analysis information generated in the study can be efficiently utilized to improve Y and/or related parameters under terminal stage drought stress through marker-assisted breeding.


Assuntos
Adaptação Biológica , Secas , Característica Quantitativa Herdável , Estresse Fisiológico , Triticum/fisiologia , Mapeamento Cromossômico , Grão Comestível/fisiologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Padrões de Herança , Melhoramento Vegetal , Locos de Características Quantitativas
2.
BMC Genomics ; 16: 216, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25887001

RESUMO

BACKGROUND: Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers. RESULTS: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence. CONCLUSION: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Endogamia , Doenças das Plantas/genética , Locos de Características Quantitativas
3.
J Exp Bot ; 66(12): 3477-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821073

RESUMO

Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.


Assuntos
Adaptação Fisiológica/genética , Cruzamento/métodos , Mudança Climática , Variação Genética , Triticum/genética , Conservação dos Recursos Naturais
4.
Sci Rep ; 14(1): 9205, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649738

RESUMO

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Assuntos
Chenopodium quinoa , Genoma de Planta , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fenótipo , Peru , Genótipo , Bolívia , Cromossomos de Plantas/genética , Característica Quantitativa Herdável
5.
BMC Genet ; 14: 12, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442150

RESUMO

BACKGROUND: Selection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. Recently, some drought-tolerant rice varieties have been developed using this selection criterion and successfully released for cultivation in drought-prone target environments. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. Most of the identified QTLs show large QTL × environment or QTL × genetic background interactions. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. An IR74371-46-1-1 × Sabitri backcross inbred line population was screened for reproductive-stage drought stress at the International Rice Research Institute, Philippines, and Regional Agricultural Research Station, Nepalgunj, Nepal, in the dry and wet seasons of 2011, respectively. A bulk segregant analysis approach was used to identify markers associated with high grain yield under drought. RESULTS: A QTL, qDTY12.1, significantly associated with grain yield under reproductive-stage drought stress was identified on chromosome 12 with a consistent effect in two environments: IRRI, Philippines, and RARS, Nepalgunj, Nepal. This QTL explained phenotypic variance of 23.8% and contributed an additive effect of 45.3% for grain yield under drought. The positive QTL allele for qDTY12.1 was contributed by tolerant parent IR74371-46-1-1. CONCLUSIONS: In this study, qDTY12.1 showed a consistent effect across environments for high grain yield under lowland reproductive-stage drought stress in the background of popular high-yielding but drought-susceptible recipient variety Sabitri. qDTY12.1 was also reported previously [Crop Sci 47:507-516, 2007] to increase grain yield under upland reproductive-stage drought stress situations. qDTY12.1 is the only QTL reported so far in rice to have shown a large effect against multiple recipient genetic backgrounds as well as under highly diverse upland and lowland rice ecosystems. qDTY12.1 can be successfully introgressed to improve grain yield under drought of popular high-yielding but drought-susceptible lowland as well as upland adapted varieties following marker-assisted breeding.


Assuntos
Genes de Plantas , Oryza/fisiologia , Ásia Ocidental , Secas , Ecossistema , Genética Populacional , Oryza/genética , Fenótipo , Locos de Características Quantitativas
6.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771512

RESUMO

Plant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.

7.
Funct Integr Genomics ; 12(3): 447-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476619

RESUMO

Drought is a major constraint to maintaining yield stability of wheat in rain fed and limited irrigation agro-ecosystems. Genetic improvement for drought tolerance in wheat has been difficult due to quantitative nature of the trait involving multiple genes with variable effects and lack of effective selection strategies employing molecular markers. Here, a framework molecular linkage map was constructed using 173 DNA markers randomly distributed over the 21 wheat chromosomes. Grain yield and other drought-responsive shoot and root traits were phenotyped for 2 years under drought stress and well-watered conditions on a mapping population of recombinant inbred lines (RILs) derived from a cross between drought-sensitive semidwarf variety "WL711" and drought-tolerant traditional variety "C306". Thirty-seven genomics region were identified for 10 drought-related traits at 18 different chromosomal locations but most of these showed small inconsistent effects. A consistent genomic region associated with drought susceptibility index (qDSI.4B.1) was mapped on the short arm of chromosome 4B, which also controlled grain yield per plant, harvest index, and root biomass under drought. Transcriptome profiling of the parents and two RIL bulks with extreme phenotypes revealed five genes underlying this genomic region that were differentially expressed between the parents as well as the two RIL bulks, suggesting that they are likely candidates for drought tolerance. Syntenic genomic regions of barley, rice, sorghum, and maize genomes were identified that also harbor genes for drought tolerance. Markers tightly linked to this genomic region in combination with other important regions on group 7 chromosomes may be used in marker-assisted breeding for drought tolerance in wheat.


Assuntos
Adaptação Biológica , Secas , Estudos de Associação Genética/métodos , Genoma de Planta , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Epistasia Genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Oryza/genética , Oryza/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sintenia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
8.
Theor Appl Genet ; 125(1): 155-69, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22361948

RESUMO

Fine-mapping studies on four QTLs, qDTY(2.1), qDTY(2.2), qDTY(9.1) and qDTY(12.1), for grain yield (GY) under drought were conducted using four different backcross-derived populations screened in 16 experiments from 2006 to 2010. Composite and bayesian interval mapping analyses resolved the originally identified qDTY(2.1) region of 42.3 cM into a segment of 1.6 cM, the qDTY(2.2) region of 31.0 cM into a segment of 6.7 cM, the qDTY(9.1) region of 32.1 cM into two segments of 9.4 and 2.4 cM and the qDTY(12.1) region of 10.6 cM into two segments of 3.1 and 0.4 cM. Two of the four QTLs (qDTY(9.1) and qDTY(12.1)) having effects under varying degrees of stress severity showed the presence of more than one region within the original QTL. The study found the presence of a donor allele at RM262 within qDTY(2.1) and RM24334 within qDTY(9.1) showing a negative effect on GY under drought, indicating the necessity of precise fine mapping of QTL regions before using them in marker-assisted selection (MAS). However, the presence of sub-QTLs together in close vicinity to each other provides a unique opportunity to breeders to introgress such regions together as a unit into high-yielding drought-susceptible varieties through MAS.


Assuntos
Secas , Oryza/crescimento & desenvolvimento , Oryza/genética , Mapeamento Físico do Cromossomo/métodos , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Marcadores Genéticos , Padrões de Herança/genética , Escore Lod , Fenótipo , Dinâmica Populacional , Característica Quantitativa Herdável
9.
Front Genet ; 13: 959266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176294

RESUMO

As one of the oldest fruit trees of the Arabian peninsula, other Middle-Eastern countries, and also North Africa, the date palm (Phoenix dactylifera L.), is highly significant for the economy of the region. Listed as part of UNESCO's Intangible Cultural Heritage of Humanity, the date palm is believed to be the first tree cultivated by human beings, and was probably first harvested for its fruit nearly 7,000 years ago. Initial research efforts in date palm genetics focused on understanding the genetic diversity of date palm germplasm collections and its phylogenetic history, both important prerequisites for plant improvement. Despite various efforts, the center of origin of the date palm is still unclear, although genomic studies suggest two probable domestication events: one in the Middle East and the other in North Africa, with two separate gene pools. The current review covers studies related to omics analyses that have sought to decipher the present genetic diversity of the date palm. With advances and cost reductions in sequencing technologies, rapid progress has been made in the past few years in date palm genomics research. Along with organellar genomes, several reference genomes of the date palm are now available. In addition, several genotypes have been re-sequenced, either to detect single nucleotide polymorphisms (SNPs), or to study domestication and identification of key genes/loci associated with important agronomic traits, such as sex, fruit color, and sugar composition. These genomics research progress has paved the way to perform fast-track and precise germplasm improvement processes in date palm. In this study, we review the advances made in the genetics and genomics of the date palm so as to strategize targeted crop improvement plans for marginal areas of the Middle Eastern peninsula, North Africa, and other parts of the world.

10.
Front Plant Sci ; 13: 839704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283935

RESUMO

Orphan crops are indigenous and invariably grown by small and marginal farmers under subsistence farming systems. These crops, which are common and widely accepted by local farmers, are highly rich in nutritional profile, good for medicinal purposes, and well adapted to suboptimal growing conditions. However, these crops have suffered neglect and abandonment from the scientific community because of very low or no investments in research and genetic improvement. A plausible reason for this is that these crops are not traded internationally at a rate comparable to that of the major food crops such as wheat, rice, and maize. Furthermore, marginal environments have poor soils and are characterized by extreme weather conditions such as heat, erratic rainfall, water deficit, and soil and water salinity, among others. With more frequent extreme climatic events and continued land degradation, orphan crops are beginning to receive renewed attention as alternative crops for dietary diversification in marginal environments and, by extension, across the globe. Increased awareness of good health is also a major contributor to the revived attention accorded to orphan crops. Thus, the introduction, evaluation, and adaptation of outstanding varieties of orphan crops for dietary diversification will contribute not only to sustained food production but also to improved nutrition in marginal environments. In this review article, the concept of orphan crops vis-à-vis marginality and food and nutritional security is defined for a few orphan crops. We also examined recent advances in research involving orphan crops and the potential of these crops for dietary diversification within the context of harsh marginal environments. Recent advances in genomics coupled with molecular breeding will play a pivotal role in improving the genetic potential of orphan crops and help in developing sustainable food systems. We concluded by presenting a potential roadmap to future research engagement and a policy framework with recommendations aimed at facilitating and enhancing the adoption and sustainable production of orphan crops under agriculturally marginal conditions.

11.
BMC Genomics ; 12: 319, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21679437

RESUMO

BACKGROUND: In the last few years, efforts have been made to identify large effect QTL for grain yield under drought in rice. However, identification of most precise and consistent QTL across the environments and genetics backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-analysis approach. RESULTS: The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821 cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1 were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought. Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar transport-related genes were found in clusters in most of the meta-QTL. CONCLUSIONS: Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection individually and in combinations. Validation and comparative genomics of the major-effect QTL confirmed their consistency within and across the species. The shortlisted candidate genes can be cloned to unravel the molecular mechanism regulating grain yield under drought.


Assuntos
Agricultura , Secas , Grão Comestível/genética , Genômica/métodos , Poaceae/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Consenso , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Marcadores Genéticos/genética , Poaceae/crescimento & desenvolvimento , Reprodutibilidade dos Testes
12.
BMC Genet ; 12: 89, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22008150

RESUMO

BACKGROUND: Drought is one of the most important abiotic stresses causing drastic reductions in yield in rainfed rice environments. The suitability of grain yield (GY) under drought as a selection criterion has been reported in the past few years. Most of the quantitative trait loci (QTLs) for GY under drought in rice reported so far has been in the background of low-yielding susceptible varieties. Such QTLs have not shown a similar effect in multiple high- yielding drought-susceptible varieties, thus limiting their use in marker-assisted selection. Genetic control of GY under reproductive-stage drought stress (RS) in elite genetic backgrounds was studied in three F3:4 mapping populations derived from crosses of N22, a drought-tolerant aus cultivar, with Swarna, IR64, and MTU1010, three high-yielding popular mega-varieties, with the aim to identify QTLs for GY under RS that show a consistent effect in multiple elite genetic backgrounds. Three populations were phenotyped under RS in the dry seasons (DS) of 2009 and 2010 at IRRI. For genotyping, whole-genome scans for N22/MTU1010 and bulked segregant analysis for N22/Swarna and N22/IR64 were employed using SSR markers. RESULTS: A major QTL for GY under RS, qDTY1.1, was identified on rice chromosome 1 flanked by RM11943 and RM431 in all three populations. In combined analysis over two years, qDTY1.1 showed an additive effect of 29.3%, 24.3%, and 16.1% of mean yield in N22/Swarna, N22/IR64, and N22/MTU1010, respectively, under RS. qDTY1.1 also showed a positive effect on GY in non-stress (NS) situations in N22/Swarna, N22/IR64 over both years, and N22/MTU1010 in DS2009. CONCLUSIONS: This is the first reported QTL in rice with a major and consistent effect in multiple elite genetic backgrounds under both RS and NS situations. Consistency of the QTL effect across different genetic backgrounds makes it a suitable candidate for use in marker-assisted breeding.


Assuntos
Secas , Genoma de Planta , Oryza/genética , Locos de Características Quantitativas , Cruzamento , Mapeamento Cromossômico , Produtos Agrícolas , Grão Comestível/genética , Fenótipo
13.
PLoS One ; 16(1): e0246015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33513167

RESUMO

Deploying under-utilized landraces in wheat breeding has been advocated to accelerate genetic gains in current era of genomics assisted breeding. Mexican bread wheat landraces (Creole wheats) represent an important resource for the discovery of novel alleles including disease resistance. A core set of 1,098 Mexican landraces was subjected to multi-location testing for rust diseases in India, Mexico and Kenya. The landrace core set showed a continuous variation for yellow (YR) and stem rust (SR) disease severity. Principal component analysis differentiated Mexican landraces into three groups based on their respective collection sites. Linkage disequilibrium (LD) decay varied from 10 to 32 Mb across chromosomes with an averge of 23Mb across whole genome. Genome-wide association analysis revealed marker-trait associations for YR resistance in India and Mexico as well as for SR resistance in Kenya. In addition, significant additive-additive interaction effects were observed for both YR and SR resistance including genomic regions on chromosomes 1BL and 3BS, which co-locate with pleiotropic genes Yr29/Lr46/Sr58/Pm39/Ltn2 and Sr2/Yr30/Lr27, respectively. Study reports novel genomic associations for YR (chromosomes 1AL, 2BS, and 3BL) and SR (chromosomes 2AL, 4DS, and 5DS). The novel findings in Creole wheat landraces can be efficiently utilized for the wheat genetic improvement.


Assuntos
Basidiomycota , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
15.
Sci Rep ; 9(1): 650, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679756

RESUMO

Genebanks are valuable resources for crop improvement through the acquisition, ex-situ conservation and sharing of unique germplasm among plant breeders and geneticists. With over seven million existing accessions and increasing storage demands and costs, genebanks need efficient characterization and curation to make them more accessible and usable and to reduce operating costs, so that the crop improvement community can most effectively leverage this vast resource of untapped novel genetic diversity. However, the sharing and inconsistent documentation of germplasm often results in unintentionally duplicated collections with poor characterization and many identical accessions that can be hard or impossible to identify without passport information and unmatched accession identifiers. Here we demonstrate the use of genotypic information from these accessions using a cost-effective next generation sequencing platform to find and remove duplications. We identify and characterize over 50% duplicated accessions both within and across genebank collections of Aegilops tauschii, an important wild relative of wheat and source of genetic diversity for wheat improvement. We present a pipeline to identify and remove identical accessions within and among genebanks and curate globally unique accessions. We also show how this approach can also be applied to future collection efforts to avoid the accumulation of identical material. When coordinated across global genebanks, this approach will ultimately allow for cost effective and efficient management of germplasm and better stewarding of these valuable resources.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Banco de Sementes , Análise por Conglomerados , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único
16.
Front Plant Sci ; 10: 1390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781137

RESUMO

Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT's germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP-trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.

17.
Rice (N Y) ; 12(1): 8, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778782

RESUMO

BACKGROUND: Climate extremes such as drought and flood have become major constraints to the sustainable rice crop productivity in rainfed environments. Availability of suitable climate-resilient varieties could help farmers to reduce the grain yield losses resulting from the climatic extremities. The present study was undertaken with an aim to develop high-yielding drought and submergence tolerant rice varieties using marker assisted introgression of qDTY1.1, qDTY2.1, qDTY3.1 and Sub1. Performance of near isogenic lines (NILs) developed in the background of Swarna was evaluated across 60 multi-locations trials (MLTs). The selected promising lines from MLTs were nominated and evaluated in national trials across 18 locations in India and 6 locations in Nepal. RESULTS: Grain yield advantage of the NILs with qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 and qDTY2.1 + qDTY3.1 + Sub1 ranged from 76 to 2479 kg ha- 1 and 396 to 2376 kg ha- 1 under non-stress (NS) respectively and 292 to 1118 kg ha- 1 and 284 to 2086 kg ha- 1 under reproductive drought stress (RS), respectively. The NIL, IR96322-34-223-B-1-1-1-1 having qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 has been released as variety CR dhan 801 in India. IR 96321-1447-651-B-1-1-2 having qDTY1.1 + qDTY3.1 + Sub 1 and IR 94391-131-358-19-B-1-1-1 having qDTY3.1 + Sub1 have been released as varieties Bahuguni dhan-1' and 'Bahuguni dhan-2' respectively in Nepal. Background recovery of 94%, 93% and 98% was observed for IR 96322-34-223-B-1-1-1-1, IR 96321-1447-651-B-1-1-2 and IR 94391-131-358-19-B-1-1-1 respectively on 6 K SNP Infinium chip. CONCLUSION: The drought and submergence tolerant rice varieties with pyramided multiple QTLs can ensure 0.2 to 1.7 t ha- 1 under reproductive stage drought stress and 0.1 to 1.0 t ha- 1 under submergence conditions with no yield penalty under non-stress to farmers irrespective of occurrence of drought and/or flood in the same or different seasons.

18.
Sci Rep ; 8(1): 1626, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374240

RESUMO

To improve the grain yield of the lowland-adapted popular rice variety Samba Mahsuri under reproductive-stage drought (RS) and to understand the interactions between drought QTLs, two mapping populations were developed using marker-assisted selection (MAS) and marker-assisted recurrent selection (MARS). The mean grain yield of pyramided lines (PLs) with qDTY 2.2 + qDTY 4.1 in MAS is significantly higher under RS and irrigated control than lines with single QTLs. Among MARS PLs, lines with four qDTYs (qDTY 1.1 + qDTY 2.1 + qDTY 3.1 + qDTY 11.1 ) and two QTLs (qDTY 1.1 + qDTY 11.1 ) yielded higher than PLs with other qDTY combinations. The selected PLs showed a yield advantage of 0.3-2.0 t ha-1 under RS. An allelic profile of MAS PLs having same qDTY combination but with different yields under drought was studied. Hierarchical clustering grouped together the selected lines with high yield under drought. Epistasis test showed the interaction of qDTY 4.1 and qDTY 9.1 loci with qDTY 7.1 significantly increased yield under drought and all the lines with higher yield under drought possessed the conserved region of qDTY 7.1 on chromosome 7. The positive interactions among QTLs, effectiveness of QTLs in different backgrounds, introgression of DTY QTLs together with resistance to biotic stresses shall help enhance grain yield under RS.


Assuntos
Secas , Epistasia Genética , Patrimônio Genético , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Frequência do Gene
19.
Sci Rep ; 8(1): 12527, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131572

RESUMO

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the 'T' allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT's best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Abastecimento de Alimentos , Frequência do Gene , Haplótipos , Temperatura Alta , Melhoramento Vegetal , Banco de Sementes , Análise de Sequência de DNA , Estresse Fisiológico , Triticum/classificação , Triticum/crescimento & desenvolvimento
20.
Mol Breed ; 37(12): 143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151804

RESUMO

TDK1 is a popular rice variety from the Lao PDR. Originally developed for irrigated conditions, this variety suffers a high decline in yield under drought conditions. Studies have identified three quantitative trait loci (QTLs) for grain yield under drought conditions, qDTY3.1 , qDTY6.1 , and qDTY6.2 , that show a high effect in the background of this variety. We report here the pyramiding of these three QTLs with SUB1 that provides 2-3 weeks of tolerance to complete submergence, with the aim to develop drought- and submergence-tolerant near-isogenic lines (NILs) of TDK1. We used a tandem approach that combined marker-assisted backcross breeding with phenotypic selection to develop NILs with high yield under drought stress and non-stress conditions and preferred grain quality. The effect of different QTL combinations on yield and yield-related traits under drought stress and non-stress conditions is also reported. Our results show qDTY3.1 to be the largest and most consistent QTL affecting yield under drought conditions, followed by qDTY6.1 and qDTY6.2 , respectively. QTL class analysis also showed that lines with a combination of qDTY3.1 and qDTY6.1 consistently showed a higher tolerance to drought than those in which one of these QTLs was missing. In countries such as Lao PDR, where large areas under rice cultivation suffer vegetative-stage submergence and reproductive-stage drought, these lines could ensure yield stability. These lines can also serve as valuable genetic material to be used for further breeding of high-yielding, drought- and submergence-tolerant varieties in local breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA