Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3151-3160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696769

RESUMO

Marine viruses play a major role in the energy and nutrient cycle and affect the evolution of their hosts. Despite their importance, there is still little knowledge about RNA viruses. Here, we have explored the Atlantic Ocean, from surface to deep (4.296 m), and used viromics and quantitative methods to unveil the genomics, biogeography, and the mass contribution of RNA viruses to the total viroplankton. A total of 2481 putative RNA viral contigs (>500 bp) and 107 larger bona fide RNA viral genomes (>2.5 kb) were identified; 88 of them representing novel viruses belonging mostly to two clades: Yangshan assemblage (sister clade to the class Alsuviricetes) and Nodaviridae. These viruses were highly endemic and locally abundant, with little or no presence in other oceans since only ≈15% of them were found in at least one of the Tara sampling metatranscriptomes. Quantitative data indicated that the abundance of RNA viruses in the surface and deep chlorophyll maximum zone was within ≈106 VLP/mL representing a potential contribution of 5.2%-24.4% to the total viroplankton community (DNA and RNA viruses), with DNA viruses being the predominant members (≈107 VLP/mL). However, for the deep sample, the observed trend was the opposite, although as further discussed, several biases should be considered. Together these results contribute to our understanding of the diversity, abundance, and distribution of RNA viruses in the oceans and provide a basis for further investigation into their ecological roles and biogeography.


Assuntos
Vírus de RNA , Vírus , Oceanos e Mares , Vírus de RNA/genética , Oceano Atlântico , RNA , Água do Mar
2.
Nat Commun ; 14(1): 8295, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097581

RESUMO

Viruses play an important role in the marine ecosystem. However, our comprehension of viruses inhabiting the dark ocean, and in particular, under the Antarctic Ice Shelves, remains limited. Here, we mine single-cell genomic, transcriptomic, and metagenomic data to uncover the viral diversity, biogeography, activity, and their role as metabolic facilitators of microbes beneath the Ross Ice Shelf. This is the largest Antarctic ice shelf with a major impact on global carbon cycle. The viral community found in the cavity under the ice shelf mainly comprises endemic viruses adapted to polar and mesopelagic environments. The low abundance of genes related to lysogenic lifestyle (<3%) does not support a predominance of the Piggyback-the-Winner hypothesis, consistent with a low-productivity habitat. Our results indicate a viral community actively infecting key ammonium and sulfur-oxidizing chemolithoautotrophs (e.g. Nitrosopumilus spp, Thioglobus spp.), supporting a "kill-the-winner" dynamic. Based on genome analysis, these viruses carry specific auxiliary metabolic genes potentially involved in nitrogen, sulfur, and phosphorus acquisition. Altogether, the viruses under Antarctic ice shelves are putatively involved in programming the metabolism of ecologically relevant microbes that maintain primary production in these chemosynthetically-driven ecosystems, which have a major role in global nutrient cycles.


Assuntos
Ecossistema , Vírus , Regiões Antárticas , Archaea , Vírus/genética , Enxofre , Camada de Gelo
3.
Sci Rep ; 11(1): 6824, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767337

RESUMO

The replication machinery of most RNA viruses lacks proofreading mechanisms. As a result, RNA virus populations harbor a large amount of genetic diversity that confers them the ability to rapidly adapt to changes in their environment. In this work, we investigate whether further increasing the initial population diversity of a model RNA virus can improve adaptation to a single selection pressure, thermal inactivation. For this, we experimentally increased the diversity of coxsackievirus B3 (CVB3) populations across the capsid region. We then compared the ability of these high diversity CVB3 populations to achieve resistance to thermal inactivation relative to standard CVB3 populations in an experimental evolution setting. We find that viral populations with high diversity are better able to achieve resistance to thermal inactivation at both the temperature employed during experimental evolution as well as at a more extreme temperature. Moreover, we identify mutations in the CVB3 capsid that confer resistance to thermal inactivation, finding significant mutational epistasis. Our results indicate that even naturally diverse RNA virus populations can benefit from experimental augmentation of population diversity for optimal adaptation and support the use of such viral populations in directed evolution efforts that aim to select viruses with desired characteristics.


Assuntos
Biodiversidade , Vírus de RNA/classificação , Vírus de RNA/fisiologia , Substituição de Aminoácidos , Evolução Biológica , Capsídeo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Variação Genética , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA