Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Gastroenterology ; 165(3): 696-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263305

RESUMO

BACKGROUND & AIMS: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. METHODS: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. RESULTS: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03-1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84-3.58) for Native American race vs European American race CONCLUSIONS: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment.


Assuntos
Insuficiência Hepática Crônica Agudizada , COVID-19 , Humanos , América Latina/epidemiologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/epidemiologia , Cirrose Hepática/genética , Estudos Prospectivos , COVID-19/complicações , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/epidemiologia , Insuficiência Hepática Crônica Agudizada/genética , Inflamação/complicações , Prognóstico
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834611

RESUMO

Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood-brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Doenças do Sistema Nervoso Central/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , PPAR gama/metabolismo
3.
J Biol Chem ; 296: 100631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823153

RESUMO

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Receptores Imunológicos/fisiologia , Doença de Alzheimer , Amiloide/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia
4.
J Neuroinflammation ; 18(1): 225, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635136

RESUMO

Inflammation may contribute to multiple brain pathologies. One cause of inflammation is lipopolysaccharide/endotoxin (LPS), the levels of which are elevated in blood and/or brain during bacterial infections, gut dysfunction and neurodegenerative diseases, such as Parkinson's disease. How inflammation causes neuronal loss is unclear, but one potential mechanism is microglial phagocytosis of neurons, which is dependent on the microglial P2Y6 receptor. We investigated here whether the P2Y6 receptor was required for inflammatory neuronal loss. Intraperitoneal injection of LPS on 4 successive days resulted in specific loss of dopaminergic neurons (measured as cells staining with tyrosine hydroxylase or NeuN) in the substantia nigra of wild-type mice, but no neuronal loss in cortex or hippocampus. This supports the hypothesis that neuronal loss in Parkinson's disease may be driven by peripheral LPS. By contrast, there was no LPS-induced neuronal loss in P2Y6 receptor knockout mice. In vitro, LPS-induced microglial phagocytosis of cells was prevented by inhibition of the P2Y6 receptor, and LPS-induced neuronal loss was reduced in mixed glial-neuronal cultures from P2Y6 receptor knockout mice. This supports the hypothesis that microglial phagocytosis contributes to inflammatory neuronal loss, and can be prevented by blocking the P2Y6 receptor, suggesting that P2Y6 receptor antagonists might be used to prevent inflammatory neuronal loss in Parkinson's disease and other brain pathologies involving inflammatory neuronal loss.


Assuntos
Lipopolissacarídeos/toxicidade , Neurônios/metabolismo , Neurônios/patologia , Receptores Purinérgicos P2/deficiência , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Células PC12 , Ratos , Substância Negra/efeitos dos fármacos
5.
Acta Neuropathol ; 138(2): 251-273, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31006066

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aß) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer's disease) mice and found specifically expressed in microglia associated with Aß plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aß. Gal3 deletion decreased the Aß burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aß monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aß aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2-DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.


Assuntos
Doença de Alzheimer/imunologia , Galectina 3/fisiologia , Glicoproteínas de Membrana/fisiologia , Microglia/metabolismo , Receptores Imunológicos/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/imunologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Galectina 3/toxicidade , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Inflamação , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Agregação Patológica de Proteínas
6.
J Immunol ; 198(12): 4792-4801, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500071

RESUMO

Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK.


Assuntos
Galectina 3/metabolismo , Microglia/fisiologia , Neuraminidase/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Galactose/metabolismo , Galectina 3/deficiência , Galectina 3/genética , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/imunologia , Neurônios/metabolismo , Proteínas Opsonizantes/metabolismo , Oseltamivir/farmacologia , Células PC12 , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , c-Mer Tirosina Quinase
7.
J Cell Sci ; 129(1): 65-79, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26567213

RESUMO

Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Apoptose , Microglia/citologia , Fagocitose , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Antígenos de Superfície/metabolismo , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas do Leite/metabolismo , Modelos Biológicos , Óxido Nítrico/metabolismo , Células PC12 , Fagocitose/efeitos dos fármacos , Feocromocitoma/metabolismo , Fosfatidilserinas/metabolismo , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores de Vitronectina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
J Biol Chem ; 288(13): 9145-52, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23386613

RESUMO

Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.


Assuntos
Apoptose , Caspase 8/química , Inibidores de Caspase/farmacologia , Microglia/metabolismo , Necrose , Animais , Sobrevivência Celular , Células Cultivadas , Imidazóis/metabolismo , Indóis/metabolismo , Inflamação , Lipopolissacarídeos/metabolismo , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
J Neuroinflammation ; 11: 58, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24669778

RESUMO

BACKGROUND: 2-Deoxy-D-glucose is an inhibitor of glycolysis, which is protective in animal models of brain pathology, but the mechanisms of this protection are unclear. We examined whether, when and how deoxyglucose protects neurons in co-culture with astrocytes and microglia. Microglia are brain macrophages, which can damage neurons in inflammatory conditions. METHODS: Deoxyglucose was added to primary cultures of microglia and astrocytes from rat cortex, or neurons and glia from rat cerebellum, or the BV-2 microglial cell line, and cell death and cell functions were evaluated. RESULTS: Surprisingly, addition of deoxyglucose induced microglial loss and prevented spontaneous neuronal loss in long-term cultures of neurons and glia, while elimination of microglia by L-leucine-methyl ester prevented the deoxyglucose-induced neuroprotection. Deoxyglucose also prevented neuronal loss induced by addition of amyloid beta or disrupted neurons (culture models of Alzheimer's disease and brain trauma respectively). However, deoxyglucose greatly increased the neuronal death induced by hypoxia. Addition of deoxyglucose to pure microglia induced necrosis and loss, preceded by rapid ATP depletion and followed by phagocytosis of the microglia. Deoxyglucose did not kill astrocytes or neurons. CONCLUSIONS: We conclude that deoxyglucose causes microglial loss by ATP depletion, and this can protect neurons from neurodegeneration, except in conditions of hypoxia. Deoxyglucose may thus be beneficial in brain pathologies mediated by microglia, including brain trauma, but not where hypoxia is involved.


Assuntos
Desoxiglucose/farmacologia , Microglia/fisiologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ferimentos e Lesões/prevenção & controle , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Recém-Nascidos , Contagem de Células , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Feminino , Hipóxia/tratamento farmacológico , Masculino , Fagocitose/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Ferimentos e Lesões/tratamento farmacológico
11.
Lancet Neurol ; 22(2): 127-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681445

RESUMO

BACKGROUND: Adult patients with adrenoleukodystrophy have a poor prognosis owing to development of adrenomyeloneuropathy. Additionally, a large proportion of patients with adrenomyeloneuropathy develop life-threatening progressive cerebral adrenoleukodystrophy. Leriglitazone is a novel selective peroxisome proliferator-activated receptor gamma agonist that regulates expression of key genes that contribute to neuroinflammatory and neurodegenerative processes implicated in adrenoleukodystrophy disease progression. We aimed to assess the effect of leriglitazone on clinical, imaging, and biochemical markers of disease progression in adults with adrenomyeloneuropathy. METHODS: ADVANCE was a 96-week, randomised, double-blind, placebo-controlled, phase 2-3 trial done at ten hospitals in France, Germany, Hungary, Italy, the Netherlands, Spain, the UK, and the USA. Ambulatory men aged 18-65 years with adrenomyeloneuropathy without gadolinium enhancing lesions suggestive of progressive cerebral adrenoleukodystrophy were randomly assigned (2:1 without stratification) to receive daily oral suspensions of leriglitazone (150 mg starting dose; between baseline and week 12, doses were increased or decreased to achieve plasma concentrations of 200 µg·h/mL [SD 20%]) or placebo by means of an interactive response system and a computer-generated sequence. Investigators and patients were masked to group assignment. The primary efficacy endpoint was change from baseline in the Six-Minute Walk Test distance at week 96, analysed in the full-analysis set by means of a mixed model for repeated measures with restricted maximum likelihood and baseline value as a covariate. Adverse events were also assessed in the full-analysis set. This study was registered with ClinicalTrials.gov, NCT03231878; the primary study is complete; patients had the option to continue treatment in an open-label extension, which is ongoing. FINDINGS: Between Dec 8, 2017, and Oct 16, 2018, of 136 patients screened, 116 were randomly assigned; 62 [81%] of 77 patients receiving leriglitazone and 34 [87%] of 39 receiving placebo completed treatment. There was no between-group difference in the primary endpoint (mean [SD] change from baseline leriglitazone: -27·7 [41·4] m; placebo: -30·3 [60·5] m; least-squares mean difference -1·2 m; 95% CI -22·6 to 20·2; p=0·91). The most common treatment emergent adverse events in both the leriglitazone and placebo groups were weight gain (54 [70%] of 77 vs nine [23%] of 39 patients, respectively) and peripheral oedema (49 [64%] of 77 vs seven [18%] of 39). There were no deaths. Serious treatment-emergent adverse events occurred in 14 (18%) of 77 patients receiving leriglitazone and ten (26%) of 39 patients receiving placebo. The most common serious treatment emergent adverse event, clinically progressive cerebral adrenoleukodystrophy, occurred in six [5%] of 116 patients, all of whom were in the placebo group. INTERPRETATION: The primary endpoint was not met, but leriglitazone was generally well tolerated and rates of adverse events were in line with the expected safety profile for this drug class. The finding that cerebral adrenoleukodystrophy, a life-threatening event for patients with adrenomyeloneuropathy, occurred only in patients in the placebo group supports further investigation of whether leriglitazone might slow the progression of cerebral adrenoleukodystrophy. FUNDING: Minoryx Therapeutics.


Assuntos
Adrenoleucodistrofia , Adulto , Masculino , Humanos , Resultado do Tratamento , Adrenoleucodistrofia/tratamento farmacológico , França , Método Duplo-Cego , Progressão da Doença
12.
J Proteome Res ; 10(3): 1043-51, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21142207

RESUMO

In vivo human brain extracellular fluids (ECF) of acute stroke patients were investigated to assess the changes in protein levels associated with ischemic damages. Microdialysates (MDs) from the infarct core (IC), the penumbra (P), and the unaffected contralateral (CT) brain regions of patients suffering an ischemic stroke (n = 6) were compared using a shotgun proteomic approach based on isobaric tagging and mass spectrometry. Quantitative analysis showed 53 proteins with increased amounts in the IC or P with respect to the CT samples. Glutathione S-transferase P (GSTP1), peroxiredoxin-1 (PRDX1), and protein S100-B (S100B) were further assessed with ELISA on the blood of unrelated control (n = 14) and stroke (n = 14) patients. Significant increases of 8- (p = 0.0002), 20- (p = 0.0001), and 11-fold (p = 0.0093) were found, respectively. This study highlights the value of ECF as an efficient source to further discover blood stroke markers.


Assuntos
Biomarcadores/análise , Química Encefálica , Encéfalo/patologia , Líquido Extracelular/química , Proteínas/análise , Acidente Vascular Cerebral/metabolismo , Adulto , Animais , Feminino , Humanos , Imunoensaio/métodos , Masculino , Microdiálise , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia
13.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078742

RESUMO

X-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARγ agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD. In addition, leriglitazone improved motor function; restored markers of oxidative stress, mitochondrial function, and inflammation in spinal cord tissues from AMN mouse models; and decreased the neurological disability in the EAE neuroinflammatory mouse model. X-ALD monocyte-derived patient macrophages treated with leriglitazone were less skewed toward an inflammatory phenotype, and the adhesion of human X-ALD monocytes to brain endothelial cells decreased after treatment, suggesting the potential of leriglitazone to prevent the progression to pathologically disrupted blood-brain barrier. Leriglitazone increased myelin debris clearance in vitro and increased myelination and oligodendrocyte survival in demyelination-remyelination in vivo models, thus promoting remyelination. Last, leriglitazone was clinically tested in a phase 1 study showing central nervous system target engagement (adiponectin increase) and changes on inflammatory biomarkers in plasma and cerebrospinal fluid. The results of our study support the use of leriglitazone in X-ALD and, more generally, in other neuroinflammatory and neurodegenerative conditions.


Assuntos
Adrenoleucodistrofia , PPAR gama/agonistas , Adrenoleucodistrofia/tratamento farmacológico , Encéfalo , Células Endoteliais , Humanos , Oligodendroglia
14.
Cell Rep ; 37(13): 110148, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965424

RESUMO

Microglia are implicated in neurodegeneration, potentially by phagocytosing neurons, but it is unclear how to block the detrimental effects of microglia while preserving their beneficial roles. The microglial P2Y6 receptor (P2Y6R) - activated by extracellular UDP released by stressed neurons - is required for microglial phagocytosis of neurons. We show here that injection of amyloid beta (Aß) into mouse brain induces microglial phagocytosis of neurons, followed by neuronal and memory loss, and this is all prevented by knockout of P2Y6R. In a chronic tau model of neurodegeneration (P301S TAU mice), P2Y6R knockout prevented TAU-induced neuronal and memory loss. In vitro, P2Y6R knockout blocked microglial phagocytosis of live but not dead targets and reduced tau-, Aß-, and UDP-induced neuronal loss in glial-neuronal cultures. Thus, the P2Y6 receptor appears to mediate Aß- and tau-induced neuronal and memory loss via microglial phagocytosis of neurons, suggesting that blocking this receptor may be beneficial in the treatment of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Transtornos da Memória/patologia , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Fagocitose , Receptores Purinérgicos P2/fisiologia , Proteínas tau/metabolismo , Animais , Feminino , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Proteínas tau/genética
15.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126649

RESUMO

The use of PD-1/PD-L1 checkpoint inhibitors in advanced NSCLC is associated with longer survival. However, many patients do not benefit from PD-1/PD-L1 blockade, largely because of immunosuppression. New immunotherapy-based combinations are under investigation in an attempt to improve outcomes. Id1 (inhibitor of differentiation 1) is involved in immunosuppression. In this study, we explored the potential synergistic effect of the combination of Id1 inhibition and pharmacological PD-L1 blockade in three different syngeneic murine KRAS-mutant lung adenocarcinoma models. TCGA analysis demonstrated a negative and statistically significant correlation between PD-L1 and Id1 expression levels. This observation was confirmed in vitro in human and murine KRAS-driven lung cancer cell lines. In vivo experiments in KRAS-mutant syngeneic and metastatic murine lung adenocarcinoma models showed that the combined blockade targeting Id1 and PD-1 was more effective than each treatment alone in terms of tumor growth impairment and overall survival improvement. Mechanistically, multiplex quantification of CD3+/CD4+/CD8+ T cells and flow cytometry analysis showed that combined therapy favors tumor infiltration by CD8+ T cells, whilst in vivo CD8+ T cell depletion led to tumor growth restoration. Co-culture assays using CD8+ cells and tumor cells showed that T cells present a higher antitumor effect when tumor cells lack Id1 expression. These findings highlight that Id1 blockade may contribute to a significant immune enhancement of antitumor efficacy of PD-1 inhibitors by increasing PD-L1 expression and harnessing tumor infiltration of CD8+ T lymphocytes.

16.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618637

RESUMO

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Microglia/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/veterinária , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Elementos Facilitadores Genéticos , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Intensive Care Med ; 34(8): 1384-92, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18350273

RESUMO

OBJECTIVE: Recent experimental evidence suggests that matrix metalloproteinases (MMPs) are implicated in the pathophysiology of traumatic brain injury (TBI) by increasing blood-brain barrier permeability and exacerbating posttraumatic edema. We examined the acute profile of MMP-2 and MMP-9 in the plasma of patients with moderate or severe TBI and in the brain extracellular fluid (ECF). DESIGN: Prospective observational study. SETTING: Neurotraumatology intensive care unit of a tertiary university hospital. PATIENTS: Twenty patients with moderate or severe TBI were included and three groups were used as controls: 20 patients with a mild head injury and normal CT scan, 15 moderate polytrauma patients without TBI, and 20 healthy volunteers. INTERVENTIONS: Plasma samples were collected within the first 12[Symbol: see text]h and at 24[Symbol: see text]h post-injury. Simultaneous brain microdialysate and plasma samples were obtained in four moderate-severe TBI patients at additional timepoints: 48, 72, and 96[Symbol: see text]h post-TBI. MEASUREMENTS AND MAIN RESULTS: Gelatinases (MMP-2 and MMP-9) were measured by gelatin zymography. A significant increase in plasma gelatinases was observed at baseline when compared with healthy volunteers in the study group. This early increase was followed by a significant decrease at 24[Symbol: see text]h post-injury. Brain microdialysis samples presented a similar time profile as plasma samples for both gelatinases. CONCLUSIONS: High levels of gelatinases were found in plasma and brain ECF in the early phase of TBI, indicating that both local and systemic trauma-induced upregulation of gelatinases in the acute phase might play an important role in the pathophysiology of TBI and could be a future therapeutic target.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas/metabolismo , Líquido Extracelular/metabolismo , Gelatinases/metabolismo , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Adulto , Lesões Encefálicas/classificação , Lesões Encefálicas/fisiopatologia , Feminino , Escala de Coma de Glasgow , Humanos , Escala de Gravidade do Ferimento , Masculino , Microdiálise/métodos , Estudos Prospectivos
18.
FEBS J ; 285(19): 3566-3575, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125686

RESUMO

It was previously thought that neurons were phagocytosed only when dead or dying. However, it is increasingly clear that viable synapses, dendrites, axons and whole neurons can be phagocytosed alive (defined here as neurophagy), and this may contribute to a wide range of developmental, physiological and pathological processes. Phagocytosis of live synapses, dendrites and axons by glia contributes to experience-dependent sculpting of neuronal networks during development, but excessive phagocytosis of synapses may contribute to pathology in Alzheimer's disease, schizophrenia and ageing. Neurons can expose phosphatidylserine or calreticulin, which act as 'eat me' signals provoking phagocytosis via microglial receptors, whereas sialylation of neuronal surfaces acts as a 'don't eat me' signal that inhibits phagocytosis and desialylation can provoke phagocytosis. Opsonins, such as complement components and apolipoproteins, are released during inflammation and enhance engulfment. Phagocytosis of neurons is seen in multiple human diseases, but it is as yet unclear whether inhibition of phagocytosis will be beneficial in treating neurological diseases. Here we review the signals regulating glial phagocytosis of live neurons and synapses, and the involvement of this phagocytosis in development and disease.


Assuntos
Encefalopatias/fisiopatologia , Neuroglia/patologia , Neurônios/patologia , Fagocitose , Sinapses/patologia , Animais , Morte Celular , Humanos , Inflamação
19.
Front Cell Neurosci ; 12: 313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30297984

RESUMO

Microglia, the resident immune cells of the brain, have multiple functions in physiological and pathological conditions, including Alzheimer's disease (AD). The use of primary microglial cell cultures has proved to be a valuable tool to study microglial biology under various conditions. However, more advanced transfection methodologies for primary cultured microglia are still needed, as current methodologies provide low transfection efficiency and induce cell death and/or inflammatory activation of the microglia. Here, we describe an easy, and effective method based on the Glial-Mag method (OZ Biosciences) using magnetic nanoparticles and a magnet to successfully transfect primary microglia cells with different small interfering RNAs (siRNAs). This method does not require specialist facilities or specific training and does not induce cell toxicity or inflammatory activation. We demonstrate that this protocol successfully decreases the expression of two key genes associated with AD, the triggering receptor expressed in myeloid cells 2 (TREM2) and CD33, in primary microglia cell cultures.

20.
J Neurosurg ; 106(4): 530-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17432701

RESUMO

OBJECT: Ischemic lesions are highly prevalent in patients with traumatic brain injuries (TBIs) and are the single most important cause of secondary brain damage. The prevention and early treatment of these lesions is the primary aim in the modem treatment of these patients. One of the most widely used monitoring techniques at the bedside is quantification of brain extracellular level of lactate by using arteriojugular venous differences of lactate (AVDL). The purpose of this study was to determine the sensitivity, specificity, and predictive value of AVDL as an indicator of increases in brain lactate production in patients with TBIs. METHODS: Arteriojugular venous differences of lactate were calculated every 6 hours using samples obtained though a catheter placed in the jugular bulb in 45 patients with diffuse head injuries (57.8%) or evacuated brain lesions (42.2%). Cerebral lactate concentration obtained with a 20-kD microdialysis catheter implanted in undamaged tissue was used as the de facto gold standard. Six hundred seventy-three AVDL determinations and cerebral microdialysis samples were obtained simultaneously; 543 microdialysis samples (81%) showed lactate values greater than 2 mmol/L, but only 21 AVDL determinations (3.1%) showed an increase in brain lactate. No correlation was found between AVDL and cerebral lactate concentration (p = 0.014, p = 0.719). Arteriojugular venous differences of lactate had a sensitivity and specificity of 3.3 and 97.7%, respectively, with a false-negative rate of 96.7% and a false-positive rate of 2.3%. CONCLUSIONS: Arteriojugular venous differences of lactate do not reliably reflect increased cerebral lactate production and consequently are not reliable in ruling out brain ischemia in patients with TBIs. The clinical use of this monitoring method in neurocritical care should be reconsidered.


Assuntos
Lesões Encefálicas/sangue , Encéfalo/metabolismo , Ácido Láctico/sangue , Consumo de Oxigênio/fisiologia , Adolescente , Adulto , Idoso , Feminino , Escala de Resultado de Glasgow , Humanos , Veias Jugulares/fisiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA