Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(8): 1636-1649, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33478991

RESUMO

The acquisition of neuronal polarity is a complex molecular process that depends on changes in cytoskeletal dynamics and directed membrane traffic, regulated by the Rho and Rab families of small GTPases, respectively. However, during axon specification, a molecular link that couples these protein families has yet to be identified. In this paper, we describe a new positive feedback loop between Rab8a and Cdc42, coupled by Tuba, a Cdc42-specific guanine nucleotide-exchange factor (GEF), that ensures a single axon generation in rodent hippocampal neurons from embryos of either sex. Accordingly, Rab8a or Tuba gain-of-function generates neurons with supernumerary axons whereas Rab8a or Tuba loss-of-function abrogated axon specification, phenocopying the well-established effect of Cdc42 on neuronal polarity. Although Rab8 and Tuba do not interact physically, the activity of Rab8 is essential to generate a proximal to distal axonal gradient of Tuba in cultured neurons. Tuba-associated and Rab8a-associated polarity defects are also evidenced in vivo, since dominant negative (DN) Rab8a or Tuba knock-down impairs cortical neuronal migration in mice. Our results suggest that Tuba coordinates directed vesicular traffic and cytoskeleton dynamics during neuronal polarization.SIGNIFICANCE STATEMENT The morphologic, biochemical, and functional differences observed between axon and dendrites, require dramatic structural changes. The extension of an axon that is 1 µm in diameter and grows at rates of up to 500 µm/d, demands the confluence of two cellular processes: directed membrane traffic and fine-tuned cytoskeletal dynamics. In this study, we show that both processes are integrated in a positive feedback loop, mediated by the guanine nucleotide-exchange factor (GEF) Tuba. Tuba connects the activities of the Rab GTPase Rab8a and the Rho GTPase Cdc42, ensuring the generation of a single axon in cultured hippocampal neurons and controlling the migration of cortical neurons in the developing brain. Finally, we provide compelling evidence that Tuba is the GEF that mediates Cdc42 activation during the development of neuronal polarity.


Assuntos
Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Movimento Celular/fisiologia , Chlorocebus aethiops , Retroalimentação Fisiológica/fisiologia , Feminino , Hipocampo/embriologia , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
2.
J Cell Sci ; 133(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932508

RESUMO

Neurons are highly complex cells that heavily rely on intracellular transport to distribute a range of functionally essential cargoes within the cell. Post-translational modifications of tubulin are emerging as mechanisms for regulating microtubule functions, but their impact on neuronal transport is only marginally understood. Here, we have systematically studied the impact of post-translational polyglutamylation on axonal transport. In cultured hippocampal neurons, deletion of a single deglutamylase, CCP1 (also known as AGTPBP1), is sufficient to induce abnormal accumulation of polyglutamylation, i.e. hyperglutamylation. We next investigated how hyperglutamylation affects axonal transport of a range of functionally different neuronal cargoes: mitochondria, lysosomes, LAMP1 endosomes and BDNF vesicles. Strikingly, we found a reduced motility for all these cargoes, suggesting that polyglutamylation could act as a regulator of cargo transport in neurons. This, together with the recent discovery that hyperglutamylation induces neurodegeneration, makes it likely that perturbed neuronal trafficking could be one of the central molecular causes underlying this novel type of degeneration.This article has an associated First Person interview with the first author of the paper.


Assuntos
Neurônios , Tubulina (Proteína) , Transporte Axonal , Hipocampo/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
3.
J Therm Biol ; 74: 133-139, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801618

RESUMO

Two strategies have been described for cold tolerance in arthropods: (1) freeze-tolerant organisms, which can survive the formation of ice crystals and (2) freeze-avoidant organisms, which prevent the ice crystal formation by super cooling their internal fluids. We studied two arthropods from the Andean Range in central Chile (2400 m a.s.l.), the stick insect Agathemera crassa commonly named as "Chinchemolle", and the tarantula spider Euathlus condorito commonly named as "Araña pollito", in order to evaluate how they respond to low temperatures at the physiological and molecular levels. We sampled the soil temperature during one year to track the temperature changes that these organisms must overcome. We found minimum temperatures around -6 °C in autumn, while the temperature were stable at 0 °C in winter due to the snow. The average field-cooling rate was 0.01 ±â€¯0.006 °C min-1. For both arthropods we determined the super cooling point (SCP) at a cooling rate of 1 °C min-1 and its subsequent survival, finding that A. crassa is a freezing tolerant organism with a SCP of -3.8 ±â€¯1.8 °C and 100% survival, while E. condorito is a freezing avoidant organism with a SCP of -3.0 ±â€¯1.3 °C and 0% survival. The SCP and survival were not affected by the season in which individuals were collected, the SCP was significantly affected by the cooling rate of the experiment. Both species had low molecular weight cryoprotective in their hemolymph that could explain their cold-tolerance behavior. Glucose, glycerol, and trehalose were found in A. crassa's hemolymph, only glucose and glycerol were found in E. condorito's. We analyzed the hemolymph proteins and found no seasonal differences in composition for either species and also we detected protein antifreeze activity in the hemolymph from both arthropods.


Assuntos
Neópteros/fisiologia , Aranhas/fisiologia , Aclimatação , Animais , Proteínas Anticongelantes/metabolismo , Chile , Temperatura Baixa , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Solo
4.
Brain Res Bull ; 196: 59-67, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935053

RESUMO

Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.


Assuntos
Astrócitos , Citoesqueleto , Astrócitos/patologia , Microtúbulos , Sistema Nervoso Central/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33388391

RESUMO

Enzymes adapted to cold temperatures are commonly characterized for having higher Michaelis-Menten constants (KM) values and lower optimum and denaturation temperature, when compared to other meso or thermophilic enzymes. Phenoloxidase (PO) enzymes are ubiquitous in nature, however, they have not been reported in spiders. It is the oxygen carrier protein hemocyanin (Hc), found at high concentrations in their hemolymph, which displays an inducible PO activity. Hence, we hypothesize that Hc-derived PO activity could show features of cold adaptation in alpine species. We analyzed the Hc from two species of Theraphosidae from different thermal environments: Euathlus condorito (2400 m a.s.l.) and Grammostola rosea (500 m a.s.l.). Hc was purified from the hemolymph of both spiders and was characterized by identifying subunit composition and measuring the sodium dodecyl sulfate (SDS)-induced PO activity. The high-altitude spider Hc showed higher PO activity under all conditions and higher apparent Michaelis-Menten constant. Moreover, the optimum temperature for PO activity was lower for E. condorito Hc. These findings suggest a potential adaptation at the level of Hc-derived PO activity in Euathlus condorito, giving insights on possible mechanisms used by this mygalomorph spider to occupy extremes and variable thermal environments.


Assuntos
Ecossistema , Hemocianinas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Aranhas/enzimologia , Temperatura , Animais , Ativação Enzimática , Aranhas/fisiologia
6.
Trends Cell Biol ; 29(10): 804-819, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416684

RESUMO

Microtubule-associated proteins (MAPs) were initially discovered as proteins that bind to and stabilize microtubules. Today, an ever-growing number of MAPs reveals a more complex picture of these proteins as organizers of the microtubule cytoskeleton that have a large variety of functions. MAPs enable microtubules to participate in a plethora of cellular processes such as the assembly of mitotic and meiotic spindles, neuronal development, and the formation of the ciliary axoneme. Although some subgroups of MAPs have been exhaustively characterized, a strikingly large number of MAPs remain barely characterized other than their interactions with microtubules. We provide a comprehensive view on the currently known MAPs in mammals. We discuss their molecular mechanisms and functions, as well as their physiological role and links to pathologies.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Humanos , Camundongos
7.
PLoS One ; 11(1): e0147430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808537

RESUMO

Altered nucleoside levels may be linked to pathogenic signaling through adenosine receptors. We hypothesized that adenosine dysregulation contributes to fibrosis in diabetic kidney disease. Our findings indicate that high glucose levels and experimental diabetes decreased uptake activity through the equilibrative nucleoside transporter 1 (ENT1) in proximal tubule cells. In addition, a correlation between increased plasma content of adenosine and a marker of renal fibrosis in diabetic rats was evidenced. At the cellular level, exposure of HK2 cells to high glucose, TGF-ß and the general adenosine receptor agonist NECA, induced the expression of profibrotic cell activation markers α-SMA and fibronectin. These effects can be avoided by using a selective antagonist of the adenosine A3 receptor subtype in vitro. Furthermore, induction of fibrosis marker α-SMA was prevented by the A3 receptor antagonist in diabetic rat kidneys. In conclusion, we evidenced the contribution of purinergic signaling to renal fibrosis in experimental diabetic nephropathy.


Assuntos
Adenosina/metabolismo , Nefropatias Diabéticas/metabolismo , Fibrose/metabolismo , Túbulos Renais/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Humanos , Túbulos Renais/patologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA