Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187164

RESUMO

Combined treatments which use nanoparticles and drugs could be a synergistic strategy for the treatment of a variety of cancers to overcome drug resistance, low efficacy, and high-dose-induced systemic toxicity. In this study, the effects on human colon adenocarcinoma cells of surface modified Fe3O4 magnetic nanoparticles (MNPs) in combination with sodium butyrate (NaBu), added as a free formulation, were examined demonstrating that the co-delivery produced a cytotoxic effect on malignant cells. Two different MNP coatings were investigated: a simple polyethylene glycol (PEG) layer and a mixed folic acid (FA) and PEG layer. Our results demonstrated that MNPs with FA (FA-PEG@MNPs) have a better cellular uptake than the ones without FA (PEG@MNPs), probably due to the presence of folate that acts as an activator of folate receptors (FRs) expression. However, in the presence of NaBu, the difference between the two types of MNPs was reduced. These similar behaviors for both MNPs likely occurred because of the differentiation induced by butyrate that increases the uptake of ferromagnetic nanoparticles. Moreover, we observed a strong decrease of cell viability in a NaBu dose-dependent manner. Taking into account these results, the cooperation of multifunctional MNPs with NaBu, taking into consideration the particular cancer-cell properties, can be a valuable tool for future cancer treatment.


Assuntos
Antineoplásicos/química , Ácido Butírico/química , Compostos Férricos/química , Ácido Fólico/química , Nanopartículas de Magnetita/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Magnetismo/métodos , Polietilenoglicóis/química
2.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727075

RESUMO

Brain and other nervous system cancers are the 10th leading cause of death worldwide. Genome instability, cell cycle deregulation, epigenetic mechanisms, cytoarchitecture disassembly, redox homeostasis as well as apoptosis are involved in carcinogenesis. A diet rich in fruits and vegetables is inversely related with the risk of developing cancer. Several studies report that cruciferous vegetables exhibited antiproliferative effects due to the multi-pharmacological functions of their secondary metabolites such as isothiocyanate sulforaphane deriving from the enzymatic hydrolysis of glucosinolates. We treated human astrocytoma 1321N1 cells for 24 h with different concentrations (0.5, 1.25 and 2.5% v/v) of sulforaphane plus active myrosinase (Rapha Myr®) aqueous extract (10 mg/mL). Cell viability, DNA fragmentation, PARP-1 and γH2AX expression were examined to evaluate genotoxic effects of the treatment. Cell cycle progression, p53 and p21 expression, apoptosis, cytoskeleton morphology and cell migration were also investigated. In addition, global DNA methylation, DNMT1 mRNA levels and nuclear/mitochondrial sirtuins were studied as epigenetic biomarkers. Rapha Myr® exhibited low antioxidant capability and exerted antiproliferative and genotoxic effects on 1321N1 cells by blocking the cell cycle, disarranging cytoskeleton structure and focal adhesions, decreasing the integrin α5 expression, renewing anoikis and modulating some important epigenetic pathways independently of the cellular p53 status. In addition, Rapha Myr® suppresses the expression of the oncogenic p53 mutant protein. These findings promote Rapha Myr® as a promising chemotherapeutic agent for integrated cancer therapy of human astrocytoma.


Assuntos
Anoikis/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Astrocitoma/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Sirtuínas/metabolismo , Astrocitoma/tratamento farmacológico , Astrocitoma/patologia , Linhagem Celular Tumoral , Glicosídeo Hidrolases/farmacologia , Humanos , Isotiocianatos/farmacologia , Sulfóxidos
3.
J Neurosci Res ; 92(1): 95-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123177

RESUMO

Astrocytes are actively involved in brain development, in mature CNS regulation, and in brain plasticity. They play a critical role in response to cerebral injuries and toxicants through a reaction known as "reactive gliosis," which is characterized by specific structural and functional features. A large amount of literature highlights the central role of astrocytes in mediating methylmercury (MeHg) neurotoxicity. In fact, mercury is the major neurotoxic pollutant that continues to arouse interest in research because of the severe risk it poses to human health. In this article, we focus on the action of MeHg on human astrocyte (HA) reactivity. We clearly demonstrate that MeHg induces a state of cellular suffering by promoting delayed and atypical astrocyte reactivity mediated by impairment of the proliferative and trophic component of the astrocyte together with an inflammatory state. This condition is generated by negative modulation of the major proteins of the filamentous network, which is manifested by the destabilization of astrocytic cytoarchitecture. Our data confirms the toxic effects of MeHg on HA reactivity and allows us to hypothesize that the establishment of this state of suffering and the delayed onset of a typical astrocytic reactivity compromise the main protective function of HA.


Assuntos
Astrócitos/efeitos dos fármacos , Gliose/induzido quimicamente , Compostos de Metilmercúrio/farmacologia , Astrócitos/patologia , Linhagem Celular , Gliose/patologia , Humanos
4.
Polymers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808689

RESUMO

Polyelectrolytes assembled layer-by-layer (PEMs) are commonly used as functional coatings to build-up biological interfaces, particularly suitable as compatible layers for the interaction with a biological medium, providing suitable conditions to promote or prevent cell seeding while maintaining the phenotype. The proper assessment of the biocompatibility of PEMs and the elucidation of the related mechanisms are therefore of paramount importance. In this study, we report in detail the effect of two different PEM endings, polystyrene sulfonate (PSS) and polyethylenimine (PEI), respectively, on the cell adhesion, growth, and viability of human bone mesenchymal stromal cells (MSCs). The results have shown that PSS-ended substrates appear to be the most suitable to drive the cell adhesion and phenotype maintenance of MSCs, showing good biocompatibility. On the contrary, while the cells seem to adhere more quickly and strongly on the PEI-ended surfaces, the interaction with PEI significantly affects the growth and viability, reducing the cell spreading capability, by sequestering the adhesion molecules already in the very early steps of cell-substrate contact. These results point to the promotion of a cytostatic effect of PEI, rather than the often-claimed cytotoxicity.

5.
Front Cell Dev Biol ; 8: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211401

RESUMO

Extracellular matrix (ECM) represents an essential component of the cellular niche. In this conditioned microenvironment, the proliferation rates and differentiation states of stem cells are regulated by several factors. In contrast, in in vitro experimental models, cell growth, or induction procedures toward specific cell lines usually occur in contact with plastic, glass, or biogel supports. In this study, we evaluated the effect of a decellularized ECM, derived from bone marrow stem cells, on the neuronal differentiation of mesenchymal stem cells (MSCs) extracted from dental pulp (Dental Pulp Stem Cells - DPSCs). Since DPSCs derive from neuroectodermal embryonic precursors, they are thought to have a greater propensity toward neuronal differentiation than MSCs isolated from other sources. We hypothesized that the presence of a decellularized ECM scaffold could act positively on neuronal-DPSC differentiation through reproduction of an in vivo-like microenvironment. Results from scanning electron microscopy, immunofluorescence, and gene expression assays showed that ECM is able to positively influence the morphology of cells and their distribution and the expression of specific neuronal markers (i.e., NF-L, NF-M, NF-H, PAX6, MAP2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA