Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 78(2): 024101, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25629797

RESUMO

Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.


Assuntos
Nanotecnologia/instrumentação , Nanotecnologia/métodos , Transdutores , DNA/química , Humanos , Espaço Intracelular/fisiologia , Fenômenos Mecânicos , Proteínas Motores Moleculares/química
2.
Nanoscale ; 8(39): 17102-17107, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27714046

RESUMO

Precise positioning of a plasmonic nanoparticle (NP) near a small dielectric surface is not only necessary for understanding gap-dependent interactions between a metal and dielectric but it is also a critical component in building ultrasensitive molecular rulers and force sensing devices. In this study we investigate the gap-dependent scattering of gold and silver NPs by controllably depositing them on an atomic force microscope (AFM) tip and monitoring their scattering within the evanescent field of a tin dioxide nanofiber waveguide. The enhanced distance-dependent scattering profiles due to plasmon-dielectric coupling effects show similar decays for both gold and silver NPs given the strong dependence of the coupling on the decaying power in the near-field. Experiments and simulations also demonstrate that the NPs attached to the AFM tips act as free NPs, eliminating optical interference typically observed from secondary dielectric substrates. With the ability to reproducibly place individual plasmonic NPs on an AFM tip, and optically monitor near-field plasmon-dielectric coupling effects, this approach allows a wide-variety of light-matter interactions studies to be carried out on other low-dimensional nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA