Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118765, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604103

RESUMO

The aim of this work was to evaluate the feasibility of the use of different industrial and agricultural wastes as reactive materials in Permeable Reactive Barriers (PRB) for Acid Mine Drainage (AMD) remediation. Sugar foam (SF), paper mill sludge (PMS), drinking water sludge (DWS) and olive mill waste (OMW) were evaluated in terms of pH neutralization and metal removal from AMD. Laboratory batch tests and continuous pilot scale up-flow columns containing 82% of Volcanic Slag (VS), as porous fill material, and 18% w/w of one of the industrial and agricultural wastes previously indicated, were tested. From the batch tests it was observed that the reactive material presenting the best results were the SF and the PMS. The results obtained in all the PRB were accurately described by a pseudo-first order model, presenting coefficient of determination higher than 0.96 in all the cases. During the continuous operation of the PRB, the porosity and hydraulic retention time (HRT) of most of the up-flow columns strongly decreased due to chemical precipitation and biofilm growth. The SF presented a significant number of fine particles that were washed out by the liquid flow, generating an effluent with very high total suspended solid concentration. Despite SF was the material with the highest alkalinity potential, the reduction of the HRT limited its neutralization and metal removal capacity. PMS and DWS presented the best pollutant removal yields in the continuous operation of the PRB, ranging from 55 to 99% and 55-95% (except in the case of the Mn), respectively. These results allowed the metal removal from the AMD. Additionally, these wastes presented very good biological sulphate reduction. Based on these results, the use of PMS and DWS as reactive material in PRB would allow to simultaneously valorise the industrial waste, which is very interesting within the circular economy framework, and to remove metals from the AMD by means of a low-cost and environmentally sustainable procedure.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Esgotos , Metais , Mineração , Resíduos Industriais/análise , Ácidos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Environ Technol ; 28(12): 1333-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18341144

RESUMO

This project studied domestic wastewater treatment by horizontal subsurface flow (HSSF) constructed wetlands (CW) and compared the effect of four different plant species on the operating conditions, dissolved oxygen (DO), and redox potential (ORP), and their efficiency on pollutants removal. Five HSSF CWs were fed for 10 months with low loaded synthetic domestic wastewater, using theoretical hydraulic residence time of 7.6 days. The plant species under study were the following: Phragmites australis (CW1), Lythrum salicaria (CW3), Cladium mariscus (CW4) and Iris pseudacorus (CW5). CW2 was not planted and this was used as control. Qualitative measurements determined a greater growth of Lythrum salicaria and Iris pseudacorus than the others. Dissolved oxygen concentrations were very low in the entire bulk liquid of all the CWs. Also ORP values were very similar in all wetlands, dealing with facultative anaerobic environments. All planted wetlands improved pollutants removal compared with the unplanted control wetland. The performances in terms of COD, TN, TP and SO4(2-) removal obtained by the different CWs were in the ranges 80-90%, 35-55%, 15-40% and 45-60% respectively. Lythrum salicaria and Iris pseudacorus, which exhibited greater growth, were always the most efficient species that improved not only nutrients plant uptake but also other microbial removal processes probably due to a higher aeration potential, such as nitrification or aerobic respiration. Sulphate reduction was the most important mechanism for COD removal. Cladium mariscus, an autochthonous plant that grows in the south-central Iberian Peninsula, was less efficient than Lythrum salicaria and Iris pseudacorus, but improved the unplanted wetland wastewater efficiency.


Assuntos
Plantas/química , Eliminação de Resíduos Líquidos/métodos , Movimentos da Água , Poluentes da Água/isolamento & purificação , Purificação da Água/métodos , Áreas Alagadas , Concentração de Íons de Hidrogênio , Oxirredução , Projetos Piloto , Poluentes da Água/química
3.
Chemosphere ; 117: 382-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173714

RESUMO

This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils.


Assuntos
Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Oxigênio/química , Solo/química , Biodegradação Ambiental , Eletroquímica , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA