Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 194(23): 6618-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23144379

RESUMO

We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Pseudomonas fluorescens/genética , Análise de Sequência de DNA , Cianetos/metabolismo , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/metabolismo
2.
Microorganisms ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35893575

RESUMO

Cyanobacterial macrocolonies known as Llayta are found in Andean wetlands and have been consumed since pre-Columbian times in South America. Macrocolonies of filamentous cyanobacteria are niches for colonization by other microorganisms. However, the microbiome of edible Llayta has not been explored. Based on a culture-independent approach, we report the presence, identification, and metagenomic genome reconstruction of Cyanocohniella sp. LLY associated to Llayta trichomes. The assembled genome of strain LLY is now available for further inquiries and may be instrumental for taxonomic advances concerning this genus. All known members of the Cyanocohniella genus have been isolated from salty European habitats. A biogeographic gap for the Cyanocohniella genus is partially filled by the existence of strain LLY in Andes Mountains wetlands in South America as a new habitat. This is the first genome available for members of this genus. Genes involved in primary and secondary metabolism are described, providing new insights regarding the putative metabolic capabilities of Cyanocohniella sp. LLY.

3.
Sci Rep ; 11(1): 22673, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811460

RESUMO

The mechanisms behind the unique capacity of the vine Boquila trifoliolata to mimic the leaves of several tree species remain unknown. A hypothesis in the original leaf mimicry report considered that microbial vectors from trees could carry genes or epigenetic factors that would alter the expression of leaf traits in Boquila. Here we evaluated whether leaf endophytic bacterial communities are associated with the mimicry pattern. Using 16S rRNA gene sequencing, we compared the endophytic bacterial communities in three groups of leaves collected in a temperate rainforest: (1) leaves from the model tree Rhaphithamnus spinosus (RS), (2) Boquila leaves mimicking the tree leaves (BR), and (3) Boquila leaves from the same individual vine but not mimicking the tree leaves (BT). We hypothesized that bacterial communities would be more similar in the BR-RS comparison than in the BT-RS comparison. We found significant differences in the endophytic bacterial communities among the three groups, verifying the hypothesis. Whereas non-mimetic Boquila leaves and tree leaves (BT-RS) showed clearly different bacterial communities, mimetic Boquila leaves and tree leaves (BR-RS) showed an overlap concerning their bacterial communities. The role of bacteria in this unique case of leaf mimicry should be studied further.


Assuntos
Bactérias/genética , Mimetismo Biológico/genética , Endófitos/genética , Folhas de Planta/microbiologia , Ranunculales/microbiologia , Árvores/microbiologia , Verbenaceae/microbiologia , Chile , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Parques Recreativos , RNA Ribossômico 16S/genética , Floresta Úmida
4.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668956

RESUMO

Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.

5.
Microorganisms ; 8(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380652

RESUMO

In addition to the industrial and biomedical applications of lithium, information on the tolerance of microorganisms to high Li concentrations in natural biological systems is limited. Strain LCHXa is a novel free-living Gram-positive, non-motile bacterium strain isolated from water samples taken at Laguna Chaxa, a non-industrial water body with the highest soluble Li content (33 mM LiCl) within the Salar de Atacama basin in northern Chile. Enrichment was conducted in Luria-Bertani (LB) medium supplemented with 1 M LiCl. Strain LCHXa was a Novobiocin-resistant and coagulase negative Staphylococcus. Phylogenetically, strain LCHXa belongs to the species Staphylococcus sciuri. Strain LCHXa grew optimally in LB medium at pH 6-8 and 37 °C, and it was able to sustain growth at molar Li concentrations at 2 M LiCl, with a decrease in the specific growth rate of 85%. Osmoregulation in strain LCHXa partially involves glycine betaine and glycerol as compatible solutes.

6.
Front Microbiol ; 11: 324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194531

RESUMO

An extreme halophilic archaeon, strain SGH1, is a novel microorganism isolated from endolithic microbial communities colonizing halites at Salar Grande, Atacama Desert, in northern Chile. Our study provides structural, biochemical, genomic, and physiological information on this new isolate living at the edge of the physical and chemical extremes at the Atacama Desert. SGH1 is a Gram-negative, red-pigmented, non-motile unicellular coccoid organism. Under the transmission electron microscope, strain SGH1 showed an abundant electro-dense material surrounding electron-lucent globular structures resembling gas vacuoles. Strain SGH1 showed a 16S rRNA gene sequence with a close phylogenetic relationship to the extreme halophilic archaea Haloterrigena turkmenica and Haloterrigena salina and has been denominated Haloterrigena sp. strain SGH1. Strain SGH1 grew at 20-40°C (optimum 37°C), at salinities between 15 and 30% (w/v) NaCl (optimum 25%) and growth was improved by addition of 50 mM KCl and 0.5% w/v casamino acids. Growth was severely restricted at salinities below 15% NaCl and cell lysis is avoided at a minimal 10% NaCl. Maximal concentrations of magnesium chloride and sodium or magnesium perchlorates that supported SGH1 growth were 0.5 and 0.15M, respectively. Haloterrigena sp. strain SGH1 accumulates bacterioruberin (BR), a C50 xanthophyll, as the major carotenoid. Total carotenoids in strain SGH1 amounted to nearly 400 µg BR per gram of dry biomass. Nearly 80% of total carotenoids accumulated as geometric isomers of BR: all-trans-BR (50%), 5-cis-BR (15%), 9-cis-BR (10%), 13-cis-BR (4%); other carotenoids were dehydrated derivatives of BR. Carotenogenesis in SGH1 was a reversible and salt-dependent process; transferring BR-rich cells grown in 25% (w/v) NaCl to 15% (w/v) NaCl medium resulted in depigmentation, and BR content was recovered after transference and growth of unpigmented cells to high salinity medium. Methanol extracts and purified BR isomers showed an 8-9-fold higher antioxidant activity than Trolox or ß-carotene. Both, plasma membrane integrity and mitochondrial membrane potential measurements under acute 18-h assays showed that purified BR isomers were non-toxic to cultured human THP-1 cells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30701248

RESUMO

A Gram-positive, coagulase-negative, novobiocin resistant, and lithium-tolerant bacterium was isolated from Salar de Atacama. Strain LCHXa is closely related to Staphylococcus sciuri. Its genome is 3,013,090 bp long and contains 2,551 predicted protein genes. We observed 58 genes associated with stress response and 17 genes linked to osmoregulation, mainly related to glycine betaine metabolism.

8.
PLoS One ; 13(5): e0195080, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29715297

RESUMO

Arsenic (As), a highly toxic metalloid, naturally present in Camarones River (Atacama Desert, Chile) is a great health concern for the local population and authorities. In this study, the taxonomic and functional characterization of bacterial communities associated to metal-rich sediments from three sites of the river (sites M1, M2 and M3), showing different arsenic concentrations, were evaluated using a combination of approaches. Diversity of bacterial communities was evaluated by Illumina sequencing. Strains resistant to arsenic concentrations varying from 0.5 to 100 mM arsenite or arsenate were isolated and the presence of genes coding for enzymes involved in arsenic oxidation (aio) or reduction (arsC) investigated. Bacterial communities showed a moderate diversity which increased as arsenic concentrations decreased along the river. Sequences of the dominant taxonomic groups (abundances ≥1%) present in all three sites were affiliated to Proteobacteria (range 40.3-47.2%), Firmicutes (8.4-24.8%), Acidobacteria (10.4-17.1%), Actinobacteria (5.4-8.1%), Chloroflexi (3.9-7.5%), Planctomycetes (1.2-5.3%), Gemmatimonadetes (1.2-1.5%), and Nitrospirae (1.1-1.2%). Bacterial communities from sites M2 and M3 showed no significant differences in diversity between each other (p = 0.9753) but they were significantly more diverse than M1 (p<0.001 and p<0.001, respectively). Sequences affiliated with Proteobacteria, Firmicutes, Acidobacteria, Chloroflexi and Actinobacteria at M1 accounted for more than 89% of the total classified bacterial sequences present but these phyla were present in lesser proportions in M2 and M3 sites. Strains isolated from the sediment of sample M1, having the greatest arsenic concentration (498 mg kg-1), showed the largest percentages of arsenic oxidation and reduction. Genes aio were more frequently detected in isolates from M1 (54%), whereas arsC genes were present in almost all isolates from all three sediments, suggesting that bacterial communities play an important role in the arsenic biogeochemical cycle and detoxification of arsenical compounds. Overall, results provide further knowledge on the microbial diversity of arsenic contaminated fresh-water sediments.


Assuntos
Arsênio/toxicidade , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Bactérias/classificação , Bactérias/genética
9.
Genome Announc ; 3(4)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26294639

RESUMO

We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert.

10.
Genome Announc ; 2(3)2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855306

RESUMO

Cupriavidus sp. strain SK-4 is a bacterium capable of growing aerobically on monochlorobiphenyls and dichlorobiphenyls as the sole carbon sources for growth. Here, we report its draft genome sequence with the aim of facilitating an understanding of polychlorinated biphenyl biodegradation mechanisms.

11.
Genome Announc ; 2(4)2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24994805

RESUMO

We report the draft genome sequence of Cupriavidus sp. strain SK-3, which can use 4-chlorobiphenyl and 4-clorobenzoic acid as the sole carbon source for growth. The draft genome sequence allowed the study of the polychlorinated biphenyl degradation mechanism and the recharacterization of the strain SK-3 as a Cupriavidus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA