Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(10): 23587-603, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437402

RESUMO

Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the "affinity maturation" step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas Recombinantes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos/metabolismo , Antígenos/metabolismo , Biotinilação , Calorimetria , Técnicas de Visualização da Superfície Celular , Células HeLa , Humanos , Indicadores e Reagentes , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína
2.
J Biol Chem ; 285(27): 20526-31, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20421295

RESUMO

The biological methyl donor S-adenosyl-l-methionine (AdoMet) is spontaneously degraded by inversion of its sulfonium center to form the R,S diastereomer. Unlike its precursor, (S,S)-AdoMet, (R,S)-AdoMet has no known cellular function and may have some toxicity. Although the rate of (R,S)-AdoMet formation under physiological conditions is significant, it has not been detected at substantial levels in vivo in a wide range of organisms. These observations imply that there are mechanisms that either dispose of (R,S)-AdoMet or convert it back to (S,S)-AdoMet. Previously, we identified two homocysteine methyltransferases (Mht1 and Sam4) in yeast capable of recognizing and metabolizing (R,S)-AdoMet. We found similar activities in worms, plants, and flies. However, it was not established whether these activities could prevent R,S accumulation. In this work, we show that both the Mht1 and Sam4 enzymes are capable of preventing R,S accumulation in Saccharomyces cerevisiae grown to stationary phase; deletion of both genes results in significant (R,S)-AdoMet accumulation. To our knowledge, this is the first time that such an accumulation of (R,S)-AdoMet has been reported in any organism. We show that yeast cells can take up (R,S)-AdoMet from the medium using the same transporter (Sam3) used to import (S,S)-AdoMet. Our results suggest that yeast cells have evolved efficient mechanisms not only for dealing with the spontaneous intracellular generation of the (R,S)-AdoMet degradation product but for utilizing environmental sources as a nutrient.


Assuntos
Senescência Celular/fisiologia , Homocisteína S-Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Genótipo , Homocisteína S-Metiltransferase/deficiência , Homocisteína S-Metiltransferase/genética , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , S-Adenosilmetionina/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Rejuvenation Res ; 13(2-3): 362-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20370499

RESUMO

The biological methyl donor S-adenosyl-L-methionine [(S,S)-AdoMet] can spontaneously break down under physiological conditions to form the inactive diastereomer (R,S)-AdoMet, which may interfere with cell function. Although several lower organisms metabolize (R,S)-AdoMet via homocysteine methyltransferases, it is unclear how mammals deal with it. In this paper, we show that the mouse liver extracts, containing the BHMT-2 homocysteine methyltransferase candidate for a similar activity, recognizes (S,S)-AdoMet but not (R,S)-AdoMet. We find no evidence for the enzymatic breakdown of (R,S)-AdoMet in these extracts. Thus, mammals may metabolize (R,S)-AdoMet using a different strategy than other organisms.


Assuntos
Envelhecimento/metabolismo , Homocisteína S-Metiltransferase/metabolismo , Mamíferos/metabolismo , S-Adenosilmetionina/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Betaína-Homocisteína S-Metiltransferase/fisiologia , Catálise , Dípteros/genética , Dípteros/metabolismo , Helmintos/genética , Helmintos/metabolismo , Homocisteína S-Metiltransferase/fisiologia , Humanos , Fígado/enzimologia , Fígado/metabolismo , Mamíferos/genética , Camundongos , Conformação Molecular , Estresse Oxidativo , Plantas/genética , Plantas/metabolismo , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Especificidade por Substrato , Leveduras/genética , Leveduras/metabolismo
4.
J Biol Chem ; 282(12): 8604-12, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17264075

RESUMO

The biological methyl donor S-adenosylmethionine (AdoMet) can exist in two diastereoisomeric states with respect to its sulfonium ion. The S configuration, (S,S)-AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the R form, producing (R,S)-AdoMet. As of yet, (R,S)-AdoMet has no known physiological function and may inhibit cellular reactions. In this study, we found two Saccharomyces cerevisiae enzymes that are capable of recognizing (R,S)-AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, identified previously as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine, respectively. We found here that Sam4 recognizes both (S,S)- and (R,S)-AdoMet, but that its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet, whereas no activity is seen with the S,S form. R,S-Specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)-AdoMet in these organisms.


Assuntos
Homocisteína S-Metiltransferase/metabolismo , Metiltransferases/química , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Caenorhabditis elegans/enzimologia , Drosophila melanogaster/enzimologia , Homocisteína/química , Homocisteína S-Metiltransferase/química , Cinética , Metionina/química , Camundongos , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA