RESUMO
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Assuntos
DNA , Motivos de Nucleotídeos , DNA/química , Quadruplex G , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Mitoxantrona , Humanos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
BACKGROUND: Perivascular epithelioid cell neoplasms (PEComas) encompass a heterogeneous family of mesenchymal tumors. Previously described clinicopathologic features aimed at distinguishing benign from malignant variants but lacked prognostic value. METHODS: This retrospective analysis examined clinicopathologic data from patients who had localized PEComa across French Sarcoma Network centers. The authors analyzed 12 clinicopathologic features in a Cox proportional hazard framework to derive a multivariate prognostic risk model for event-free survival (EFS). They built the PEComa prognostic score (PEC-PRO), in which scores ranged from 0 to 5, based on the coefficients of the multivariate model. Three groups were identified: low risk (score = 0), intermediate risk (score = 1), and high risk (score ≥ 2). RESULTS: Analyzing 87 patients who had a median 46-month follow-up (interquartile range, 20-74 months), the median EFS was 96.5 months (95% confidence interval [CI], 47.1 months to not applicable), with 2-year and 5-year EFS rates of 64.7% and 58%, respectively. The median overall survival was unreached, with 2-year and 5-year overall survival rates of 82.3% and 69.3%, respectively. The simplified Folpe classification did not correlate with EFS. Multivariate analysis identified three factors affecting EFS: positive surgical margins (hazard ratio [HR], 5.17; 95% CI, 1.65-16.24; p = .008), necrosis (HR, 3.94; 95% CI, 1.16-13.43; p = .030), and male sex (HR, 3.13; 95% CI, 1.19-8.27; p = 0.023). Four variables were retained in the prognostic model. Patients with low-risk PEC-PRO scores had a 2-year EFS rate of 93.7% (95% CI, 83.8%-100.0%), those with intermediate-risk PEC-PRO scores had a 2-year EFS rate of 67.4% (95% CI, 53.9%-80.9%), and those with high-risk PEC-PRO scores had a 2-year EFS rate of 2.3% (95% CI, 0.0%-18.3%). CONCLUSIONS: The PEC-PRO score reliably predicts the risk of postoperative recurrence in patients with localized PEComa. It has the potential to improve follow-up strategies but requires validation in a prospective trial.
Assuntos
Neoplasias de Células Epitelioides Perivasculares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto , Neoplasias de Células Epitelioides Perivasculares/patologia , Neoplasias de Células Epitelioides Perivasculares/terapia , Neoplasias de Células Epitelioides Perivasculares/mortalidade , Neoplasias de Células Epitelioides Perivasculares/cirurgia , Idoso , Adulto Jovem , Adolescente , Modelos de Riscos Proporcionais , Taxa de SobrevidaRESUMO
The most common form of DNA methylation involves the addition of a methyl group to a cytosine base in the context of a cytosine-phosphate-guanine (CpG) dinucleotide. Genomes from more primitive organisms are more abundant in CpG sites that, through the process of methylation, deamination and subsequent mutation to thymine-phosphate-guanine (TpG) sites, can produce new transcription factor binding sites. Here, we examined the evolutionary history of the over 36 000 glucocorticoid receptor (GR) consensus binding motifs in the human genome and identified a subset of them in regulatory regions that arose via a deamination and subsequent mutation event. GR can bind to both unmodified and methylated pre-GR binding sequences (GBSs) that contain a CpG site. Our structural analyses show that CpG methylation in a pre-GBS generates a favorable interaction with Arg447 mimicking that made with a TpG in a GBS. This methyl-specific recognition arose 420 million years ago and was conserved during the evolution of GR and likely helps fix the methylation on the relevant cytosines. Our study provides the first genetic, biochemical and structural evidence of high-affinity binding for the likely evolutionary precursor of extant TpG-containing GBS.
Assuntos
Metilação de DNA/genética , Evolução Molecular , Genoma Humano/genética , Receptores de Glucocorticoides/genética , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Fosfatos de Dinucleosídeos/genética , Humanos , Conformação de Ácido Nucleico , Receptores de Glucocorticoides/ultraestrutura , Sequências Reguladoras de Ácido Nucleico/genética , Timina/químicaRESUMO
While most transcription factors exit the chromatin during mitosis and the genome becomes silent, a subset of factors remains and "bookmarks" genes for rapid reactivation as cells progress through the cell cycle. However, it is unknown whether such bookmarking factors bind to chromatin similarly in mitosis and how different binding capacities among them relate to function. We compared a diverse set of transcription factors involved in liver differentiation and found markedly different extents of mitotic chromosome binding. Among them, the pioneer factor FoxA1 exhibits the greatest extent of mitotic chromosome binding. Genomically, ~15% of the FoxA1 interphase target sites are bound in mitosis, including at genes that are important for liver differentiation. Biophysical, genome mapping, and mutagenesis studies of FoxA1 reveals two different modes of binding to mitotic chromatin. Specific binding in mitosis occurs at sites that continue to be bound from interphase. Nonspecific binding in mitosis occurs across the chromosome due to the intrinsic chromatin affinity of FoxA1. Both specific and nonspecific binding contribute to timely reactivation of target genes post-mitosis. These studies reveal an unexpected diversity in the mechanisms by which transcription factors help retain cell identity during mitosis.
Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Mitose , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Modelos Moleculares , Nucleossomos , Ligação ProteicaRESUMO
In mammalian cells, 5-methylcytosine (5mC) occurs in genomic double-stranded DNA (dsDNA) and is enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC). These cytosine modifications are enriched in regulatory regions of the genome. The effect of these oxidative products on five bZIP dimers (CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun) binding to five types of dsDNA was measured using protein binding microarrays. The five dsDNAs contain either cytosine in both DNA strands or cytosine in one strand and either 5mC, 5hmC, 5fC, or 5caC in the second strand. Some sequences containing the CEBP half-site GCAA are bound more strongly by all five bZIP domains when dsDNA contains 5mC, 5hmC, or 5fC. dsDNA containing 5caC in some TRE (AP-1)-like sequences, e.g., TGACTAA, is better bound by Zta, ATF3|cJun, and cFos|cJun.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Citosina/análogos & derivados , DNA/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/química , Citosina/química , DNA/química , Camundongos , Análise Serial de Proteínas , Ligação ProteicaRESUMO
DNA methylation at the promoter of a gene is presumed to render it silent, yet a sizable fraction of genes with methylated proximal promoters exhibit elevated expression. Here, we show, through extensive analysis of the methylome and transcriptome in 34 tissues, that in many such cases, transcription is initiated by a distal upstream CpG island (CGI) located several kilobases away that functions as an alternative promoter. Specifically, such genes are expressed precisely when the neighboring CGI is unmethylated but remain silenced otherwise. Based on CAGE and Pol II localization data, we found strong evidence of transcription initiation at the upstream CGI and a lack thereof at the methylated proximal promoter itself. Consistent with their alternative promoter activity, CGI-initiated transcripts are associated with signals of stable elongation and splicing that extend into the gene body, as evidenced by tissue-specific RNA-seq and other DNA-encoded splice signals. Furthermore, based on both inter- and intra-species analyses, such CGIs were found to be under greater purifying selection relative to CGIs upstream of silenced genes. Overall, our study describes a hitherto unreported conserved mechanism of transcription of genes with methylated proximal promoters in a tissue-specific fashion. Importantly, this phenomenon explains the aberrant expression patterns of some cancer driver genes, potentially due to aberrant hypomethylation of distal CGIs, despite methylation at proximal promoters.
Assuntos
Ilhas de CpG , Inativação Gênica , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética , Linhagem Celular , Metilação de DNA , Humanos , TranscriptomaRESUMO
G-quadruplexes (G4) are considered new drug targets for human diseases such as cancer. More than 10,000 G4s have been discovered in human chromatin, posing challenges for assessing the selectivity of a G4-interactive ligand. 3,6-bis(1-Methyl-4-vinylpyridinium) carbazole diiodide (BMVC) is the first fluorescent small molecule for G4 detection in vivo. Our previous structural study shows that BMVC binds to the MYC promoter G4 (MycG4) with high specificity. Here, we utilize high-throughput, large-scale custom DNA G4 microarrays to analyze the G4-binding selectivity of BMVC. BMVC preferentially binds to the parallel MycG4 and selectively recognizes flanking sequences of parallel G4s, especially the 3'-flanking thymine. Importantly, the microarray results are confirmed by orthogonal NMR and fluorescence binding analyses. Our study demonstrates the potential of custom G4 microarrays as a platform to broadly and unbiasedly assess the binding selectivity of G4-interactive ligands, and to help understand the properties that govern molecular recognition.
Assuntos
Carbazóis/metabolismo , Corantes Fluorescentes/metabolismo , Quadruplex G , Proteínas Proto-Oncogênicas c-myc/genética , Compostos de Piridínio/metabolismo , Carbazóis/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Ligantes , Análise em Microsséries , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Compostos de Piridínio/químicaRESUMO
Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with coregulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate that a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model in which the basal occupancy of transcription factors acts to prime chromatin and direct inducible transcription factors to select regions in the genome.
Assuntos
Cromatina/metabolismo , Modelos Genéticos , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição AP-1/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/química , Regulação da Expressão Gênica , Genoma , Ligantes , Camundongos , Receptores de Glucocorticoides/química , Elementos Reguladores de Transcrição , Fator de Transcrição AP-1/químicaRESUMO
Zta is a bZIP transcription factor (TF) in the Epstein-Barr virus that binds unmethylated and methylated DNA sequences. Substitution of cysteine 189 of Zta to serine (Zta(C189S)) results in a virus that is unable to execute the lytic cycle, which was attributed to a change in binding to methylated DNA sequences. To learn more about the role of this position in defining sequence-specific DNA binding, we mutated cysteine 189 to four other amino acids, producing Zta(C189S), Zta(C189T), Zta(C189A), and Zta(C189V) mutants. Zta and mutants were used in protein binding microarray (PBM) experiments to evaluate sequence-specific DNA binding to four types of double-stranded DNA (dsDNA): 1) with cytosine in both strands (DNA(C|C)), 2) with 5-methylcytosine (5mC) in one strand and cytosine in the second strand (DNA(5mC|C)), 3) with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand (DNA(5hmC|C)), and 4) with both cytosines in all CG dinucleotides containing 5mC (DNA(5mCG)). Zta(C189S) and Zta(C189T) bound the TRE (AP-1) motif (TGAG/CTCA) more strongly than wild-type Zta, while binding to other sequences, including the C/EBP half site GCAA was reduced. Binding of Zta(C189S) and Zta(C189T) to DNA containing modified cytosines (DNA(5mC|C), DNA(5hmC|C), and DNA(5mCG)) was reduced compared to Zta. Zta(C189A) and Zta(C189V) had higher non-specific binding to all four types of DNA. Our data suggests that position C189 in Zta impacts sequence-specific binding to DNA containing modified and unmodified cytosine.
Assuntos
Substituição de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , DNA/metabolismo , Transativadores/química , Transativadores/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Sequência de Bases , Metilação de DNA/genética , Proteínas Mutantes/química , Motivos de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Domínios Proteicos , Relação Estrutura-AtividadeRESUMO
The Epstein-Barr virus (EBV) B-ZIP transcription factor Zta binds to many DNA sequences containing methylated CG dinucleotides. Using protein binding microarrays (PBMs), we analyzed the sequence specific DNA binding of Zta to four kinds of double-stranded DNA (dsDNA): (1) DNA containing cytosine in both strands, (2) DNA with 5-methylcytosine (5mC) in one strand and cytosine in the second strand, (3) DNA with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand, and (4) DNA in which both cytosines in all CG dinucleotides contain 5mC. We compared these data to PBM data for three additional B-ZIP proteins (CREB1 and CEBPB homodimers and cJun|cFos heterodimers). With cytosine, Zta binds the TRE motif TGAC/GTCA as previously reported. With CG dinucleotides containing 5mC on both strands, many TRE motif variants containing a methylated CG dinucleotide at two positions in the motif, such as MGAGTCA and TGAGMGA (where M = 5mC), were preferentially bound. 5mC inhibits binding of Zta to both TRE motif half-sites GTCA and CTCA. Like the CREB1 homodimer, the Zta homodimer and the cJun|cFos heterodimer more strongly bind the C/EBP half-site tetranucleotide GCAA when it contains 5mC. Zta also binds dsDNA sequences containing 5hmC in one strand, although the effect is less dramatic than that observed for 5mC. Our results identify new DNA sequences that are well-bound by the viral B-ZIP protein Zta only when they contain 5mC or 5hmC, uncovering the potential for discovery of new viral and host regulatory programs controlled by EBV.
Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transativadores/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , DNA/genética , Camundongos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Análise Serial de Proteínas , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , Transativadores/genéticaRESUMO
Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR-binding sites are occupied by C/EBPß. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPß for GR recruitment. Disruption of C/EBPß binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin remodelling specifically at sites co-occupied by GR and C/EBPß. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPß regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell-specific priming proteins and chromatin remodellers.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Dexametasona/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Nucleossomos , Motivos de Nucleotídeos , Especificidade de Órgãos , Ligação Proteica , Receptores de Glucocorticoides/genética , Elementos Reguladores de Transcrição , Elementos de Resposta/genéticaRESUMO
Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.
Assuntos
Biologia Computacional/métodos , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Transcriptoma , Animais , Análise por Conglomerados , Drosophila melanogaster/classificação , Evolução Molecular , Éxons , Feminino , Genoma de Inseto , Humanos , Masculino , Motivos de Nucleotídeos , Filogenia , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Edição de RNA , Sítios de Splice de RNA , Splicing de RNA , Reprodutibilidade dos Testes , Sítio de Iniciação de TranscriçãoRESUMO
In human and mouse stem cells and brain, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) can occur outside of CG dinucleotides. Using protein binding microarrays (PBMs) containing 60-mer DNA probes, we evaluated the effect of 5mC and 5hmC on one DNA strand on the double-stranded DNA binding of the mouse B-ZIP transcription factors (TFs) CREB1, ATF1, and JUND. 5mC inhibited binding of CREB1 to the canonical CRE half-site |GTCA but enhanced binding to the C/EBP half-site |GCAA. 5hmC inhibited binding of CREB1 to all 8-mers except TGAT|GCAA, where binding is enhanced. We observed similar DNA binding patterns with ATF1, a closely related B-ZIP domain. In contrast, both 5mC and 5hmC inhibited binding of JUND. These results identify new DNA sequences that are well-bound by CREB1 and ATF1 only when they contain 5mC or 5hmC. Analysis of two X-ray structures examines the consequences of 5mC and 5hmC on DNA binding by CREB and FOS|JUN.
Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/metabolismo , Animais , Camundongos , Regiões Promotoras GenéticasRESUMO
During mammalian development, some methylated cytosines (5mC) in CG dinucleotides are iteratively oxidized by TET dioxygenases to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). The effect of these cytosine oxidative products on the sequence-specific DNA binding of transcription factors is being actively investigated. Here, we used the electrophoretic mobility shift assay (EMSA) to examine C/EBPα and C/EBPß homodimers binding to all 25 chemical forms of a CG dinucleotide for two DNA sequences: the canonical C/EBP 8-mer TTGC|GCAA and the chimeric C/EBP|CRE 8-mer TTGC|GTCA. 5hmC in the CG dinucleotide in the C/EBP|CRE motif 8-mer TGAC|GCAA inhibits binding of C/EBPß but not C/EBPα. Binding was increased by 5mC, 5fC and 5caC. Circular dichroism monitored thermal denaturations for C/EBPß bound to the C/EBP|CRE motif confirmed the EMSA. The structural differences between C/EBPα and C/EBPß that may account for the difference in binding 5hmC in the 8-mer TGAC|GCAA are explored.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA/genética , Fatores de Transcrição/genética , 5-Metilcitosina/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/química , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/química , Cristalografia por Raios X , Citosina/análogos & derivados , Citosina/metabolismo , Nucleotídeos de Citosina/genética , DNA/química , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Motivos de Nucleotídeos/genética , Fatores de Transcrição/metabolismoRESUMO
There are numerous examples of parental transgenerational inheritance that is epigenetic. The informational molecules include RNA, chromatin modifications, and cytosine methylation. With advances in DNA sequencing technologies, the molecular and epigenetic mechanisms mediating these effects are now starting to be uncovered. This mini-review will highlight some of the examples of epigenetic inheritance, the establishment of cytosine methylation in sperm, and recent genomic studies linking sperm cytosine methylation to epigenetic effects on offspring. A recent paper examining changes in diet and sperm cytosine methylation from pools of eight animals each, found differences between a normal diet, a high fat diet, and a low protein diet. However, epivariation between individuals within a group was greater than the differences between groups obscuring any potential methylation changes linked to diet. Learning more about epivariation may help unravel the mechanisms that regulate cytosine methylation. In addition, other experimental and genetic systems may also produce more dramatic changes in the sperm methylome, making it easier to unravel potential transgenerational phenomena. J. Cell. Physiol. 231: 2346-2352, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Padrões de Herança/genética , Animais , Dieta , Humanos , Nucleossomos/metabolismo , FenótipoRESUMO
To evaluate the effect of CG methylation on DNA binding of sequence-specific B-ZIP transcription factors (TFs) in a high-throughput manner, we enzymatically methylated the cytosine in the CG dinucleotide on protein binding microarrays. Two Agilent DNA array designs were used. One contained 40,000 features using de Bruijn sequences where each 8-mer occurs 32 times in various positions in the DNA sequence. The second contained 180,000 features with each CG containing 8-mer occurring three times. The first design was better for identification of binding motifs, while the second was better for quantification. Using this novel technology, we show that CG methylation enhanced binding for CEBPA and CEBPB and inhibited binding for CREB, ATF4, JUN, JUND, CEBPD, and CEBPG. The CEBPB|ATF4 heterodimer bound a novel motif CGAT|GCAA 10-fold better when methylated. The electrophoretic mobility shift assay (EMSA) confirmed these results. CEBPB ChIP-seq data using primary female mouse dermal fibroblasts with 50× methylome coverage for each strand indicate that the methylated sequences well-bound on the arrays are also bound in vivo. CEBPB bound 39% of the methylated canonical 10-mers ATTGC|GCAAT in the mouse genome. After ATF4 protein induction by thapsigargin which results in ER stress, CEBPB binds methylated CGAT|GCAA in vivo, recapitulating what was observed on the arrays. This methodology can be used to identify new methylated DNA sequences preferentially bound by TFs, which may be functional in vivo.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ilhas de CpG , Metilação de DNA , Fator 4 Ativador da Transcrição/química , Animais , Sequência de Bases , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/química , Feminino , Fibroblastos , Camundongos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Tapsigargina/imunologia , Fatores de Transcrição/metabolismoRESUMO
Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citosina/análogos & derivados , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dicroísmo Circular , Citosina/química , Citosina/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Elementos E-Box , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização ProteicaRESUMO
ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5(+/m)) mice that were haploinsuffficient for Atad5. Atad5(+/m) mice displayed high levels of genomic instability in vivo, and Atad5(+/m) mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5(+/m) mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5(+/m) mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis.
Assuntos
Adenosina Trifosfatases/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Aneuploidia , Animais , Linhagem Celular , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Endométrio/genética , Feminino , Predisposição Genética para Doença , Instabilidade Genômica , Humanos , Masculino , Camundongos , Mutação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , UbiquitinaçãoRESUMO
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~15% are unmethylated. Five percent of CGs cluster into ~20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space.
Assuntos
Ilhas de CpG , Metilação de DNA , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Neoplasias/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas , Fatores de Transcrição/fisiologia , Transcrição GênicaRESUMO
BACKGROUND: Chromatin plays a critical role in regulating transcription factors (TFs) binding to their canonical transcription factor binding sites (TFBS). Recent studies in vertebrates show that many TFs preferentially bind to genomic regions that are well bound by nucleosomes in vitro. Co-occurring secondary motifs sometimes correlated with functional TFBS. RESULTS: We used a logistic regression to evaluate how well the propensity for nucleosome binding and co-occurrence of a secondary motif identify which canonical motifs are bound in vivo. We used ChIP-seq data for three transcription factors binding to their canonical motifs: c-Jun binding the AP-1 motif (TGA(C)/(G)TCA), GR (glucocorticoid receptor) binding the GR motif (G-ACA---(T)/(C)GT-C), and Hoxa2 (homeobox a2) binding the Pbx (Pre-B-cell leukemia homeobox) motif (TGATTGAT). For all canonical TFBS in the mouse genome, we calculated intrinsic nucleosome occupancy scores (INOS) for its surrounding 150-bps DNA and examined the relationship with in vivo TF binding. In mouse mammary 3134 cells, c-Jun and GR proteins preferentially bound regions calculated to be well-bound by nucleosomes in vitro with the canonical AP-1 and GR motifs themselves contributing to the high INOS. Functional GR motifs are enriched for AP-1 motifs if they are within a nucleosome-sized 150-bps region. GR and Hoxa2 also bind motifs with low INOS, perhaps indicating a different mechanism of action. CONCLUSION: Our analysis quantified the contribution of INOS and co-occurring sequence to the identification of functional canonical motifs in the genome. This analysis revealed an inherent competition between some TFs and nucleosomes for binding canonical TFBS. GR and c-Jun cooperate if they are within 150-bps. Binding of Hoxa2 and a fraction of GR to motifs with low INOS values suggesting they are not in competition with nucleosomes and may function using different mechanisms.