Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34250814

RESUMO

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Assuntos
Adaptação Fisiológica , Sistema Cardiovascular/metabolismo , Estilo de Vida , Obesidade/metabolismo , Programas de Redução de Peso , Adulto , Fatores Etários , Idoso , Composição Corporal , Humanos , Masculino , Pessoa de Meia-Idade
2.
Front Endocrinol (Lausanne) ; 13: 836344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185804

RESUMO

The regulation of insulin secretion is under control of a complex inter-organ/cells crosstalk involving various metabolites and/or physical connections. In this review, we try to illustrate with current knowledge how ß-cells communicate with other cell types and organs in physiological and pathological contexts. Moreover, this review will provide a better understanding of the microenvironment and of the context in which ß-cells exist and how this can influence their survival and function. Recent studies showed that ß-cell insulin secretion is regulated also by a direct and indirect inter-organ/inter-cellular communication involving various factors, illustrating the idea of "the hidden face of the iceberg". Moreover, any disruption on the physiological communication between ß-cells and other cells or organs can participate on diabetes onset. Therefore, for new anti-diabetic treatments' development, it is necessary to consider the entire network of cells and organs involved in the regulation of ß-cellular function and no longer just ß-cell or pancreatic islet alone. In this context, we discuss here the intra-islet communication, the ß-cell/skeletal muscle, ß-cell/adipose tissue and ß-cell/liver cross talk.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo
3.
J Clin Endocrinol Metab ; 107(1): e130-e142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415992

RESUMO

CONTEXT: Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE: To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS: AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS: During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION: Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.


Assuntos
Tecido Adiposo/patologia , Dieta Redutora , Redes Reguladoras de Genes , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/patologia , Transcriptoma , Redução de Peso , Tecido Adiposo/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Feminino , Seguimentos , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Masculino , Obesidade/metabolismo , Prognóstico
4.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32106110

RESUMO

We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise-stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.


Assuntos
Exercício Físico/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Lipólise/fisiologia , Músculo Esquelético/metabolismo , Adulto , Humanos , Masculino
5.
Cell Rep ; 27(2): 323-333.e5, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970240

RESUMO

Ectopic lipid deposition (ELD) is defined by excess fat storage in locations not classically associated with adipose tissue (AT) storage. ELD is positively correlated with insulin resistance and increased risk of metabolic disorders. ELD appears as lipid droplets or adipocytes, whose cell origin is unknown. We previously showed that subcutaneous AT (ScAT) releases adipocyte progenitors into the circulation. Here, we demonstrate that triggering or preventing the release of adipocyte precursors from ScAT directly promoted or limited ectopic adipocyte formation in skeletal muscle in mice. Importantly, obesity-associated metabolic disorders could be mimicked by causing adipocyte precursor release without a high-fat diet. Finally, during nutrient overload, adipocyte progenitors exited ScAT, where their retention signals (CXCR4/CXCL12 axis) were greatly decreased, and further infiltrated skeletal muscles. These data provide insights into the formation of ELD associated with calorie overload and highlight adipocyte progenitor trafficking as a potential target in the treatment of metabolic diseases.


Assuntos
Gordura Subcutânea/metabolismo , Animais , Humanos , Absorção Intramuscular , Camundongos , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA